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Role of omics techniques in the toxicity 
testing of nanoparticles
Eleonore Fröhlich*

Abstract 

Nanotechnology is regarded as a key technology of the twenty-first century. Despite the many advantages of 
nanotechnology it is also known that engineered nanoparticles (NPs) may cause adverse health effects in humans. 
Reports on toxic effects of NPs relay mainly on conventional (phenotypic) testing but studies of changes in epig-
enome, transcriptome, proteome, and metabolome induced by NPs have also been performed. NPs most relevant 
for human exposure in consumer, health and food products are metal, metal oxide and carbon-based NPs. They were 
also studied quite frequently with omics technologies and an overview of the study results can serve to answer the 
question if screening for established targets of nanotoxicity (e.g. cell death, proliferation, oxidative stress, and inflam-
mation) is sufficient or if omics techniques are needed to reveal new targets. Regulated pathways identified by omics 
techniques were confirmed by phenotypic assays performed in the same study and comparison of particle types and 
cells by the same group indicated a more cell/organ-specific than particle specific regulation pattern. Between dif-
ferent studies moderate overlap of the regulated pathways was observed and cell-specific regulation is less obvious. 
The lack of standardization in particle exposure, in omics technologies, difficulties to translate mechanistic data to 
phenotypes and comparison with human in vivo data currently limit the use of these technologies in the prediction 
of toxic effects by NPs.
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Background
Many scientists view nanotechnology as the revolution-
ary technology of the twenty-first century because it 
opened new possibilities for improvement of products 
used in healthcare, cosmetics, and medicine. Nano-
sized materials, on the other hand, can also have nega-
tive effects on human health, particularly when inhaled. 
Epidemiological data showed adverse action of air-borne 
ultrafine particles on humans, which were confirmed in 
animal exposures [1]. Toxicity of metal, metal oxide and 
carbon-based nanoparticles (NPs) is most relevant for 
human health because exposure to this group of NPs is 
highest, occurs over long periods and degradation and 
excretion of the ingested particles are low [2]. Numerous 
studies have addressed adverse effects of NPs exposure 
by in  vitro and in  vivo experiments. The vast majority 

of in  vitro studies used cell-based assays  with pheno-
typic readout parameters, mainly membrane integrity, 
apoptosis, cell morphology, and proliferation. Oxidative 
stress was identified as mechanism of toxic action and, 
therefore, included in the routine testing. Toxicity test-
ing of NPs in  vivo comprised exposure of rodents and 
histopathological evaluation of liver, lung, spleen, kidney, 
brain, gastrointestinal tract, analysis of bronchoalveolar 
lavage fluid, blood count and clinical chemistry as read-
out parameters.

In the last years, principles, methodology and tech-
niques of toxicity testing changed and these develop-
ments have also influenced the testing of NPs. One 
important change was the introduction of quantitative 
analysis of molecular and functional changes in multiple 
levels of biological organization in traditional toxicology 
testing (Fig.  1). The new strategy, termed systems toxi-
cology, changed the current approach of relying almost 
exclusively on high-dose phenotypic responses in ani-
mals [3]. Core technologies in systems toxicology are the 
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“omics” techniques, namely genomics, transcriptomics, 
proteomics and metabolomics. Omics technologies have 
also been used for in vitro and in vivo testing of NPs. One 
advantage might be the identification of new targets and 
markers for NP toxicity. Such markers would be very 
useful because exposure to NPs occurs at low levels. If 
realistic exposure levels are used in conventional in vitro 

testing it is possible that no phenotypic changes occur 
because exposure duration is too short. The application 
of higher doses, on the other hand, may lead to a different 
cell response because particle agglomeration and stabil-
ity of the dispersion depend on the particle density [4]. 
By the use of transcriptomics, however, adverse effects 
of low particle concentrations on cells may be detected 

Fig. 1  Models, readout parameters and methods in systems toxicology. a Analytical techniques to characterize NP—macromolecule interactions 
include spectroscopical techniques, such as UV–vis spectroscopy, photoluminescence, infrared absorption, Raman scattering, circular dichroism 
spectroscopy, electron paramagnetic spectroscopy, and fluorescence spectroscopy. b Biological assays exploit these technologies and, in addition 
to that, rely on absorbance, fluorescence and luminescence readers, image analysis and a variety of separation and detection platforms (high-pres-
sure liquid chromatography, gas chromatography, mass spectrometry, nuclear magnetic resonance spectroscopy, electrophoresis, etc.). c Further 
technologies are used for the analysis of organs, mainly histopathology and various staining techniques. Effects on the entire organism can also 
be detected by imaging techniques (magnetic resonance imaging, ultrasound, computed tomography, radiography, photoacoustic tomography, 
positron emission tomography, single photon emission computed tomography, thermography) as well as by observation of changes in behavior, 
appearance, deterioration of health, and death. The predictive value of the obtained results for human toxicology increases from top to bottom
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because the techniques identify changes before pheno-
typic changes are obvious. Another advantage of the 
omics techniques would be their lower interference with 
NPs. False positive and negative results in conventional 
screening assays have been frequently described. They 
are due to interference by color, fluorescence, chemical 
activity, light scattering, etc. (e.g. [5]). In contrast, simi-
lar problems have not been reported in omics studies. 
Removal of the NPs during the isolation procedure of 
the analyte appears to be the most likely reason for that. 
The use of omics techniques, however, requires more 
expensive infrastructure and skilled personal in sample 
preparation and data analysis than conventional testing. 
Based on the overview of NP studies using omics tech-
niques in  vitro and in  vivo, this review aims to answer 
the following questions (i) are omics technologies able to 
identify new targets in nanotoxicology, (ii) are the tech-
nologies robust enough to be used for toxicity screening, 
(iii) to which extent do the reported regulations corre-
spond to results obtained in phenotypic assays.

NPs contained in commercial products with relevance 
for human exposure were addressed in this review. They 
appear suitable for such a comparison although the 
action of some of the NPs is caused partly by dissolved 
ions. The different omics technologies are shortly intro-
duced and data within the same study, between platforms 
and between research groups and NP action across the 
platforms and phenotypic assays compared. Finally, a 
comparison of omics technologies to high-throughput 
phenotypic testing is made.

Omics techniques
The suffix “omics” stands for “as a whole” and includes 
epigenomics, genomics, transcriptomics, proteomics and 
metabolomics. These studies differ from the traditional 
observation of phenotypes in the way that they can pro-
vide primarily mechanistic information and may identify 
the pathway of toxicity. Based on these techniques it is 
possible to identify adaptive responses to toxicants at low 
levels that do not yet cause toxicity but put cells or organ-
isms under stress, which reflects the situation of particle 
exposure. Identification of cellular stress is important 
because manifest toxicity occurs when the compensation 
system is exhausted. An example for the manifestation of 
adverse effects only upon challenge of the organism is the 
decreased antibacterial defense of mice that have been 
exposed to CoO NPs [6].

Toxicants that do not interact or bind to a single type 
of macromolecule can perturbate multiple pathways 
and result in a broad activation of pathways. NPs influ-
ence various cellular processes (proliferation, apoptosis, 
inflammation, membrane integrity) [7] and induce such 

a pattern. In this case, it is usually difficult to deduce the 
pathway of toxicity from the regulation pattern [3].

Systems toxicology includes genomics, epigenomics 
(miRNomics and DNA modifications), transcriptomics, 
proteomics, and metabolomics. Genomics investigates 
genes and their functions by use of recombinant DNA, 
DNA sequencing and bioinformatics to analyze func-
tion and structure of the genome. The goal is to identify a 
particular sensitivity of individuals to a given toxin rather 
than the screening for toxicity of compounds or NPs. The 
epigenome can be altered by toxicants and, therefore, is 
useful for toxicity screening.

A detailed description of the respective detection 
techniques is out of the scope of this review and only 
the basic principles of the respective techniques will be 
mentioned.

Epigenomics–miRNomics
Regulation by miRNAs belongs to the group of epige-
netic effects, which are heritable changes in pheno-
type or gene expression not caused by changes in DNA 
sequence. MiRNAs are a class of small endogenous non-
coding RNAs that, typically, down-regulate gene expres-
sion either by interfering with protein synthesis via base 
pairing (complementary sequences with mRNAs) or by 
targeting RNA degradation. MiRNAs are produced as 
primary mRNAs and, still in the nucleus, are processed 
to pre-mRNAs with stem loop structure. After transfer 
to the cytoplasm the pre-form matures to RNA duplexes, 
which release a guide and a passage strand. Only the 
guide or dominant strand is incorporated in the RNA-
induced silencing complex (RISC). The opposite strand 
(passage or star strand) is quickly degraded. MiRNom-
ics is a relatively new screening platform [8]. MiRNAs 
are early indicators of cell damage and can be detected 
in peripheral blood due to slow turnover of the domi-
nant strand. With only around 2000 miRNAs miRNomics 
might be a better platform for toxicity studies than whole 
genome expression analysis. The technology is used to 
identify drug-induced hepatotoxicity, cardiotoxicity, and 
nephrotoxicity. qPCR profiling of miRNA also identified 
systemic effects after inhalation of diesel exhaust par-
ticles. According to the miRNA profile inhaled PM2.5 
induced oxidative stress in asthmatic patients [9]. The 
physiological relevance of this finding, however, is not 
yet clear because no correlation of miRNA regulation 
with airway hyper-responsiveness was seen. The lack of 
correlation to in  vivo findings is one reason why miR-
Nomics is not yet widely used in toxicity screening also 
of conventional compounds. Toxicologists currently do 
not completely understand the contribution of miRNA in 
regulating toxicological outcomes [10].
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Epigenomics—DNA methylation and histone modification
The epigenome further includes DNA methylation, post-
translational modification of histone tails, and chromatin 
remodeling. DNA methylation is the main mechanism for 
the down-regulation of gene transcription by preventing 
the transcription machinery to bind. Its main importance 
is seen in tumor biology because DNA hypomethyla-
tion in tumors is linked to progression and malignancy 
[11]. Histones are basic proteins that organize eukaryotic 
DNA into structural units. Binding of histones to DNA 
is accompanied by decrease of transcription and can be 
regulated by a variety of post-translational modifications 
[12]. Histones in the modified state detach from the DNA 
and, thereby, activate transcription. Increased activ-
ity of enzymes that remove these modifications, mainly 
histone deacetylases, are involved in cancer progression 
[13]. Epigenetic changes are involved in the transforma-
tion and mutation of cells and, therefore, may serve as 
indicator for genotoxicity. The biological relevance of an 
altered epigenome is not yet clear because DNA hypo-
methylation may cause cancer but may also be a conse-
quence of the transformed state induced by altered cell 
signaling pathways [14]. Therefore, epigenetics is also not 
(yet) a part of routine pre-clinical evaluation of drugs. 
Epigenomic studies use a variety of technologies. His-
tone acetylation is determined mainly based on antibody 
binding using immunohistochemistry and Western blot. 
DNA methylation can be quantified by polymerase chain 
reaction, pyrosequencing, high performance liquid chro-
matography (HPLC), enzyme-linked immunosorbant 
assay (ELISA), etc. [15].

Pathways that may indicate adverse effects on DNA are 
regulation of DNA damage and repair and of nucleic acid 
metabolism (listed in Table 1).

Transcriptomics
The transcriptome represents the entire set of transcripts 
or mRNAs present in a cell or an organism and is stud-
ied by a panel of molecular biological techniques. Gene 
expression profiling determines the expression level of all 
mRNAs at a given time point by DNA microarray, next 
generation RNA sequencing, subtraction hybridization, 
differential display, or serial analysis of gene expression. 
Current estimations indicate a number of around 19,000 
coded genes [16], which are represented in commercially 
available whole genome expression arrays. cDNA micro-
array analysis is the most established omics technique 
and the testing should ideally be performed across both 
dose and time. Extracted RNA is subjected to reverse 
transcription to obtain labeled cDNA or to RNA poly-
merase amplification to generate labeled cRNA. The 
sequences are hybridized to oligonucleotides on micro-
arrays and scanned under laser light. After analysis of 

the hybridization, the identified genes are allocated to 
pathways based on databases. The advantage of tran-
scriptomics is that only one type of biomolecule has to 
be extracted and analyzed, compared for instance to 
proteomics, where different protocols have to be used. 
A known limitation of transcriptomics is the fact that 
changes in mRNA expression do not influence the phe-
notype directly. Transcriptomics is a very established 
technique with high intra-array reproducibility. Compar-
ison between array platforms, on the other hand, varied 
with a Pearson correlation coefficient of 0.5–0.95 [17]. 
Problems include inaccuracy for genes with low expres-
sion levels and the fact that not all probes on the arrays 
match the target genes to the same degree.

Proteomics
Proteomics describes the analysis of functionally, struc-
turally and anatomically related proteins and can pro-
vide more direct information on cellular responses than 
gene regulation because protective cell responses are 
often orchestrated through fast modification or changes 
in cellular localization of proteins. Separation steps to 
deplete high abundance proteins and chromatographic 
enrichment help to detect specific proteins and are intro-
duced to improve coverage, sensitivity, reproducibility 
and throughput of proteome-based analysis. By using 
two-dimensional electrophoresis around 10,000 distinct 
proteins can be separated [18]. Fluorescence-labeling or 
stable isotope-labeling can identify differences in treated 
versus untreated samples. Analysis can either be bottom-
up or top-down. In the first variant peptides released 
from proteins through proteolysis are analysed [19]. This 
technique has been termed shotgun proteomics and is 
widely used. In top-down proteomics intact proteins 
are analysed. Due to the worse fractionation, ionization 
and fragmentation in the gas phase, this technique is less 
universal than the bottom-up technique. Detection uses 
mainly mass spectrometry (MS) because the platform is 
relatively flexible and allows the detection of amino acids, 
peptides and proteins. The mass spectrometer consists of 
the ionizing source and one or more analyzers. Matrix-
assisted laser desorption ionization (MALDI) and elec-
trospray ionization (ESI) are most commonly used for 
ionization of the molecules, which are then accelerated 
into time of flight (TOF), ion trap, quadrupole, orbitrap 
or Fourrier transform ion cyclotron resonance (FTIR) 
analyzer. Analyzers are usually used in tandem (MS/MS) 
to achieve higher degree of ion separation and identifi-
cation. As for transcriptomics calibration and analysis 
based on proper databases is essential for data interpre-
tation. Due to the detection technique, which includes 
digestion of the proteins, databases list between 15,000 
and 42,000 proteins and between 100 and 2000 millions 
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–1

3
IM

R-
90

8–
80

 m
M

; 4
8 

h
M

ito
si

s, 
sp

in
dl

e 
fo

rm
a-

tio
n

X
X

[6
6]

 S
iO

2
10

, 5
00

RA
W

26
4.

7
5–

50
, 2

50
–1

00
0 

µg
/m

l; 
24

 h
Tr

an
sc

rip
tio

n,
 c

el
l c

yc
le

 
pr

og
re

ss
io

n,
 in

fla
m

m
a-

tio
n 

re
sp

on
se

, a
po

p-
to

si
s, 

m
or

ph
og

en
es

is
, 

di
ffe

re
nt

ia
tio

n

X
X

X
X

[5
4]

 S
iO

2
12

A
54

9
0.

1–
6 

µg
/m

l; 
24

–7
2 

h
O

x.
 s

tr
es

s 
re

sp
on

se
; 

m
em

br
an

e 
tr

affi
ck

in
g;

 
in

fla
m

m
at

or
y 

re
sp

on
se

X
X

X
[7

8]

 S
iO

2
12

, 5
–1

0,
 1

0–
15

FE
1 

ce
lls

12
.5

–1
00

 µ
g/

m
l; 

24
 h

Ly
so

so
m

al
 g

en
es

X
[7

4]

 S
iO

2
14

, 2
0

A
54

9
0.

05
–0

.6
 m

g/
m

l; 
2 

h
In

fla
m

m
at

io
n,

 a
po

pt
os

is
, 

m
at

rix
 m

et
al

lo
pr

o-
te

in
as

es

X
X

X
[1

33
]

 S
iO

2
67

A
54

9,
 C

C
D

-3
4L

u,
 H

23
47

0.
1–

1.
5 

m
g/

m
l; 

24
–4

8 
h

In
fla

m
m

at
io

n,
 s

ig
na

l 
tr

an
sd

uc
tio

n,
 c

el
l 

de
at

h 
re

gu
la

tio
n

X
X

X
[8

2]
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2 
×

 1
00

0–
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6
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g/

m
l; 

24
 h
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fla

m
m

at
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n,
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x.
 s

tr
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s, 
an

d 
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to
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s

X
X

X
[5

3]
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iO

2 a
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ta
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7,
 2
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H
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4 
h
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fla

m
m

at
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n 
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, 

ce
ll 
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si
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X
X

[5
5]
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, 1
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, p
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, c
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2
70

00
 ×

 2
00

 ×
 1

0
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, d
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 c
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10
–1

00
 µ

g/
m

l; 
24

 h
A

po
pt

os
is

, c
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 c
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l 
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X
X

X
X

X
[9

3]

 W
C

, W
CC

o
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H
aC
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g/
m

l; 
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, c
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]
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6]
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N
A

 d
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X

X
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34

]
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5
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st
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 c
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-
m
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; 
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w
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, c
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g

X
X

X
X

X
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]

A
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N
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s
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g
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H
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l s
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m

 c
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e 
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. s
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ro
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X
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X
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[5
7]
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g
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l; 
24

 h
D

N
A

 d
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e,

 a
po

pt
os

is
, 
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. s
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es

s
X

X
[1

37
]
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7
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4 

µg
/m
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, p
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 m
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]
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]
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u
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 c
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M

; 3
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h

ER
 s

tr
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s
X

[7
9]
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u

5,
 1

5
Ba
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T3
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 µ

g/
m

l; 
72

 h
Ce

ll 
gr

ow
th

, p
ro

lif
er

a-
tio

n,
 m

or
ph

ol
og

y,
 c

el
l 

cy
cl

e,
 o

x.
 s

tr
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s, 
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fla
m

-
m

at
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n,
 E

C
M

 s
yn
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X
X

X
X

[7
1]
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ra
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 c
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H
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1
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m
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dT

e)
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. s

tr
es
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(C

uO
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N
fk
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X

X
[1
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]
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u
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g/
m
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m
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 p
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, p
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, c
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nt
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20
M
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-5
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nM
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h
O
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tr
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s, 
cy

to
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el
et

on
, 

ce
ll 

cy
cl

e 
re

gu
la

tio
n,

 
D

N
A
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ir

X
X

X
X

[1
41

]

 A
u

20
, 1

00
Lo

Vo
10

 µ
g/

m
l; 

24
 h

10
0 

nm
: P

A
K,

 M
A

PK
, 
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os
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at

as
e 

2A
 p

at
h-

w
ay

; 2
0 

nm
: c

el
l s

tr
es

s, 
pr

ot
ei

n 
ca

rb
on

yl
at

io
n

X
X

[6
0]

 C
oO

, F
e 3O

4, 
Si

O
2

<
 1

00
, 1

3,
 1

5
RA

W
26

4.
7

6.
25

–2
5 

µg
/m

l; 
24

 h
ER

 s
tr

es
s, 

ph
ag

oc
yt

os
is

X
X

[1
01

]

 C
uO

30
–5

0
BE

A
S-

2B
0.

01
 µ

g/
cm

2 ; 2
4–

72
 h

M
ai

nt
en

an
ce

, p
ro

te
in

 
sy

nt
he

si
s, 

de
at

h/
su

rv
iv

al
, c

el
l c

yc
le

, 
m

or
ph

ol
og

y

X
X

X
X

[7
2]

 C
u,

 C
uO

25
0

RA
W

26
4.

7
5–

10
 µ

g/
m

l; 
24

 h
O

x.
 s

tr
es

s 
re

sp
on

se
, G

SH
 

sy
nt

he
si

s, 
cy

to
sk

el
-

et
on

, m
ito

ch
on

dr
ia

l 
pr

ot
ei

ns

X
X

X
[6

1]

 C
uO

, T
iO

2
22

, 2
5

M
ur

in
e 

m
ac

ro
ph

ag
es

5–
10

, 1
00

 µ
g/

m
l; 

24
 h

O
x.

 s
tr

es
s 

re
sp

on
se

X
[7

7]

 F
e 3O

4
10

, 1
00

N
RK

-5
2E

1 
ng

/w
el

l; 
24

 h
Ce

ll 
de

at
h 

re
la

te
d,

 ra
s-

re
la

te
d,

 G
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-r
el

at
ed

, 
H
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, s

er
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n 
H

1,
 E

R-
re

si
de

nt
 p

ro
te

in
s

X
X

X
[1

42
]

 M
W

C
N

T
(0

.6
 ×

 3
.6

) *
 1

0E
3

H
EK

0.
4 

m
g/

m
l; 

24
–4

8 
h

M
et

ab
ol

is
m

, c
el

l 
si

gn
al

in
g,

 c
el

l s
tr

es
s, 

ve
si

cu
la

r t
ra

ffi
ck

in
g,

 
cy

to
sk

el
et

on

X
X

X
X

[1
43

]
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3
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7
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m
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ab
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sy
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-
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se
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di
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n

X
X

X
[1

44
]

 M
W

C
N

T
30

 ×
 <

 1
00

0
A
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9

0.
3–

30
0 

µg
/m

l, 
2–

24
 h
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ol

ife
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tio
n,

 o
x.

 s
tr

es
s, 

cy
to
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el

et
on

X
X

X
[6

2]
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2
25

A
54

9
10

0 
µg
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24
 h

A
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is
, c
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le
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n,

 
ox

. s
tr

es
s 
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sp
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se

, 
pr

ot
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n 
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nt
he

si
s

X
X

X
X

[6
7]
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iO

2
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0

H
aC

aT
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 µ
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m
l; 

24
 h

M
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ol
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m

, o
x.
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ss

, c
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ke

le
to

n,
 

m
ol
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 c
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pe
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ne

s, 
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op
to

si
s

X
X

X
X

X
[6

8]

 S
W

C
N

T
1–

6 
×

 1
00

0–
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00
H
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G

2
0.

1–
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0 
µg

/m
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 h
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 c
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µg
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 m
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l f
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2
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m
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 d
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, c
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 c
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 p
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t m
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is
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 re
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]
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 m
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 p
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 d
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 c
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l f
un

ct
io

n,
 

ph
ag

oc
yt

os
is

, D
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]
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m
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ra
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 p
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]
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of peptides [20]. Limitations of proteomics are both bio-
logical and technical. The preparation is prone to con-
tamination, and protein expression varies in response to 
circadian cycles, age, sex and disease. In addition to that, 
there are many proteins with partly unknown functions; 
the sensitivity of MS is still lower than other protein 
detection techniques (e.g. ELISA or Western blot), and 
usually only water-soluble proteins in a limited range of 
mass and isoelectric point are analyzed.

In addition to identification of regulated pathways, 
proteomics plays a specific role for particle characteri-
zation because it has been used to characterize proteins 
that are absorbed to the surface of NPs. The coverage of 
surfaces with macromolecules, predominantly proteins, 
is usually referred to as “protein corona” [21]. The bind-
ing of the macromolecules affects dispersion of particles 
in physiological fluids and consists of a relatively stable 
“hard” layer, which forms within seconds and a less sta-
ble “soft” layer that forms within minutes to hours [22]. 
The composition of the layer depends on absorption and 
desorption of macromolecules, where the velocity of des-
orption is the inverse of the velocity of absorption. The 
two corona layers appear to have different roles for the 
biological response. The hard layer is resistant and still 
present after cellular uptake by endosomes, while the soft 
layer is less stable and determines uptake and biological 
responses. Various groups studied the protein corona 
composition using proteomics. Influence of material, 
particle size and surface charge, hydrophobicity/hydro-
philicity, incubation time and type of biological fluid has 
been reported [23–29]. The studies reported qualitative 
and quantitative differences in the composition of the 
protein corona but also a common set of bound pro-
teins. Cytotoxicity of NPs possessing a protein corona 
was generally lower than toxic effects of NPs without. It 
is not clear whether a decreased interaction with plasma 
membrane and decreased production of reactive oxy-
gen species or specific molecules within the layer cause 
this effect. A link of specific proteins within the protein 
corona to cytotoxicity has not been identified so far.

Metabolomics
Compared to the transcriptomics and proteomics, which 
provide information of potential hazards, metabolomics 
identifies phenotypic changes that occurred in the pres-
ence of the toxicant by measuring changes in carbo-
hydrate, lipid, and amino acid patterns. Metabolomics 
differs from the former techniques in the way that it is 
not organism-specific and does not have a fixed code 
[30]. Metabolomics profiling assesses changes in the 
entire metabolome and is performed either as footprint 
(analysis of extracellular metabolites) or as fingerprint 
(analysis of the intracellular metabolites). To distinguish 

between these two profiles it is important to prevent 
leakage of metabolites from cells. Washing may not be 
ideal because it delays sample processing, which is crucial 
in order to prevent changes of the metabolite profile after 
the sampling. The basic workflow including separation 
and enrichment of the analyte proceeds in a similar way 
as for proteomics. While analysis by Nuclear Magnetic 
Resonance (NMR) can detect a variety of metabolites 
in relatively crude preparation with high reliability, the 
technique is relatively insensitive and only < 100 metab-
olites can be detected. MS based techniques are usually 
preferred because of the higher sensitivity. Separation of 
the metabolites uses gas chromatography (GC) and liquid 
chromatography (LC). GC is the ideal method for vola-
tile samples; non-volatile samples can be detected after 
derivatization. LC can easily separate non-polar metabo-
lites, while polar metabolites may require derivatization. 
The identity of the metabolites is established by MS–MS 
fragmentation and comparison of the resulting fragmen-
tation spectra to a reference database. Inter-experiment 
comparability needs “house-keeping” metabolites or 
isotope-labeled standards. The relative inexpensiveness 
of the analysis, the non-invasiveness of the sampling, 
the low number of metabolites and the good knowledge 
of the role of most metabolites in the organism make 
metabolomics particularly suitable for the study of toxi-
cology [31]. There are several limitations to this tech-
nology too. The metabolites are not organism-specific 
and the concentration range can span at least six orders 
of magnitude. This range cannot be easily compensated 
because amplification of the signal is not possible. Fur-
thermore, different detection techniques have to be used 
because metabolites belong to different classes of mol-
ecules [30]. Therefore, many studies do not analyze the 
entire metabolome but use metabolic target analysis or 
metabolomics profiling, where the analysis is restricted 
to metabolites of a specific pathway or to a specific group 
of molecules (for instances lipids). The number of metab-
olites which is usually detected ranges between 2000 and 
7000, although 42,000 metabolites have been entered 
in the Human Metabolome Databank. Metabolomics 
identified differences in  cellular effects induced by  NPs 
and  by  microparticles. In the free metabolite screening 
of human bone marrow mesenchymal stem cells treated 
with CuO particles the increase in glutamine could dis-
criminate nano-from microparticles [32].

Omics data in nanotoxicology
Combinations of the keywords “nanoparticles”, “silver, 
“gold”, “silica”, “titanium dioxide”, “copper oxide”, “zinc 
oxide”, “carbon nanotubes”, “toxicity”, “nanotoxicity”, 
“whole genome expression analysis”, “epigenetics”, “pro-
teomics”, “transcriptomics”, “metabolomics”, “miRNA 
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analysis”, and “miRNomics” were used for searches in 
PubMed and other search machines. For the overview of 
the in  vitro results, particle (material and surface func-
tionalization), particle size, exposure dose and duration, 
cells used for the studies, and reported regulated path-
ways are summarized in Table 1. Table 2 contains indica-
tion of particle (material and surface functionalization), 
particle size, animal species, exposure route, exposure 
dose and duration, and reported regulated pathways 
reported in animal studies.

In the vast majority of studies NPs had an effect on 
regulation of genes, proteins or metabolites and only few 
studies reported no effects of NPs. For instance, gold NPs 
had no significant effect on gene regulation of human 
vein endothelial cells [33] and no alterations of the pro-
tein expression profile was observed in adipose tissue 
derived stem cells after exposure to 900  nm superpara-
magnetic iron oxide particles [34].

As the reporting of regulated pathways/processes is not 
standardized, in order to compare regulated pathways 
between omics techniques and phenotypic assays the fol-
lowing groups have been formed. Stress: oxidative stress, 
stress response, antioxidant reactivity, GSH-related, HSP, 
ER stress, cell stress, chaperones; immune: inflammation, 
immune response, phagocytosis; death: apoptosis, cell 
death; proliferation: mitosis, growth, proliferation, differ-
entiation, transcription; morphology: cytoskeleton, adhe-
sion, mobility, cytoskeleton organization; metabolism: 
mitochondria, ATP content, homeostasis, gluconeogene-
sis, glycolysis, protein synthesis, amino acid levels, energy 
metabolism; vesicles: membrane trafficking, lysosomes, 
vesicles; signaling: cell signaling (mitogen-activated pro-
tein kinase (MAPK), p53, p38 MAPK), signal transduc-
tion, and genotoxicity: DNA damage, DNA repair, nucleic 
acid metabolism.

Epigenomics
DNA methylation and histone acetylation studies do not 
provide pathway regulation pattern as output and are, 
therefore, not included in Table  1. They can, however, 
be used in toxicological screening and data be linked to 
phenotypic data obtained by classic genotoxicity assays. 
DNA hypomethylation has been reported after cellular 
exposure to SiO2, ZnO, TiO2, CuO, and Ag NPs [35–38] 
but effects on global DNA methylation in  vivo by CuO 
NPs, Au NPs and SWCNTs are modest [39, 40]. Pro-
moter methylation is increased by 60  nm Au NPs and 
decreased by SWCNTs in blood cells after intratracheal 
application of the particles [40]. NPs modify histones by 
binding to SH groups of histone deacetylases, decreasing 
the enzymatic activity (Au NPs) [41], or inducing histone 
hypoacetylation in breast cancer cells (cadmium tellurite 
(CdTe) quantum dots) [42]. The available data suggest 

that exposure to NPs may favor cell transformation and 
tumor development. Conventional phenotypic genotoxic-
ity assays for chromosome damage, for instance COMET 
assay or micronucleus assay, show variable and partially 
conflicting results. TiO2 particles in sizes  <  100  nm 
showed positive results in COMET assay (17/24), micro-
nucleus (12/16), and sister chromatid exchanges (2/2) 
but predominantly negative results in COMET (3/5) and 
micronucleus (2/3) in  vivo studies [43]. Also ZnO NPs 
showed genotoxic action in cellular but not in in  vivo 
studies [44], while studies of SiO2 NPs reported weak 
genotoxic action in  vitro and no genotoxicity in animal 
studies [44]. Lastly, CuO and Ag NPs showed genotox-
icity in  vitro [45–47] and in  vivo [48, 49]. Variation in 
fibre length, contamination with heavy metals and pre-
treatment of the CNTs samples prevent inter-study com-
parison. It appears that long CNTs induce genotoxicity, 
while short CNTs do not induce prominent genotoxicity 
[50]. Phenotypic assays and epigenetic assays identified 
more damage in cellular than in animal studies. Pathway 
regulation of DNA damage and repair and nucleic acid 
metabolism as indication for genotoxicity was also more 
frequently reported in in vitro than in in vivo studies. The 
higher frequency of epigenetic changes than of genotoxic 
effects indicates that epigenomic changes induced by 
SiO2 and TiO2 NPs may not result in manifest chromo-
some damage because repair mechanisms could prevent 
it. It is, however, possible that the particles act as a chal-
lenge making cells more vulnerable to the action of other 
genotoxic agents.

Particle effects according to transcriptomics, 
proteomics and metabolomics studies
Reported regulated pathways were classified according to 
phenotype changes as routine parameters in toxicity test-
ing. This has the limitation that information on the regu-
lated genes, proteins or metabolites is lost and that high 
quality and low quality studies are treated equally. Stud-
ies using transcriptomics (50) and proteomics (33) were 
more numerous than studies reporting metabolomics (10) 
and miRNomics (4) data (Table 1). The number of reports 
on cellular transcriptomics (37), proteomics (27), metab-
olomics (7), and miRNomics (4) was higher than that of 
in  vivo studies using these techniques (13 in transcrip-
tomics, 6 in proteomics, and 3 in metabolomics, Table 2). 
One meta-analysis of gene regulation after pulmonary 
exposure to CNTs (3) and to TiO2 NPs (2) was identi-
fied [51]. Transcriptomics studies focused on Ag, SiO2, 
and ZnO NPs, while Au and CNTs were most intensely 
investigated by proteomics (Tables  1, 2). Pathways were 
reported with different frequencies  in the omics stud-
ies. Proliferation, oxidative stress, and immune pathways 
were mainly affected according to transcriptomics in cells 
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(Table 1). Regulation of inflammation according to tran-
scriptomics was also frequently reported in the in  vivo 
studies of NP exposure by the pulmonary route (Table 2), 
while more variable regulation pattern were seen after 
oral and intravenous application. In miRNomics studies 
various pathway regulations have been reported but due 
to the low number of miRNomics studies a preference 
for specific regulation pattern would not be easy to dis-
cern. Proteomics of cells reported oxidative stress, mor-
phology, energy metabolism, mitosis and apoptosis as 
most affected by NP exposure (Table 1). When particles 
were applied by pulmonary and dermal routes in ani-
mals regulation of inflammation was reported (Table  2). 
Metabolomic studies reported NP effects on oxidative 
stress, energy metabolism, apoptosis and other pathways 
in cell exposures (Table 1). In the in vivo studies effects on 
inflammation were identified (Table 2).

Several studies assessed NPs by  omics techniques  and 
phenotypic assays. Usually, only cytotoxicity screening 
assays was performed to determine the concentration 
range for the omics studies. This is important because 
strongly cytotoxic concentrations should be avoided as 
dead cells provide only limited information on regula-
tory mechanisms. If, on the other hand, concentrations 
far outside the toxic range are used, no changes in regu-
lation will be seen. Effects at different particle concentra-
tions were recorded in some studies because reaction to 
low and high particle concentrations may differ. Compari-
son with complementary techniques can confirm omics 
results and support relevance of the reported regulation 
pattern. Studies combined plate reader analysis of cytokine 
secretion, mitochodrial activity, cell death, and ROS gen-
eration [52–64], flow cytometry for cell cycle analysis and 
cell death [57, 65–68], microscopy for morphology and 
immunocytochemical staining [52, 57, 59, 67–73], and 
genotoxicity assays [74–77] with omics techniques. Other 
researchers used verification of the regulated pathways by 
using another omics technique [52, 78, 79]. Influencing the 
regulated pathway by addition of an antioxidant or study-
ing cell recovery after removal of the particle challenge 
confirmed involvement of oxidative stress [80–83]. Histol-
ogy [84–89], analysis of bronchoalveolar lavage fluid [85, 
90, 91] and clinical chemistry [84] were performed to sup-
port the results of the omics in vivo studies.

The majority of transcriptomic studies evaluated sam-
ples up to 24  h, while proteomics studies mainly col-
lected sample at ≥ 24 h (Table 1). mRNA is produced in 
oscillatory manner and the collection time of the sample 
is not representative for the levels before and after this 
time [92]. To avoid this bias, most transcriptomics stud-
ies analysed samples at different time points. The major-
ity of proteomics and metabolomics studies, on the other 
hand, analysed only one time point.

The comparison with another omics technique showed 
that endoplasmatic reticulum stress induced by Au NPs 
could be demonstrated on genetic and protein level [78]. 
Regulated genes and proteins did not overlap in cells 
exposed to TiO2 NPs and MWCNTs [93] but regulated 
pathways were essentially the same. Similarly, gene reg-
ulation coincided very well with exoproteome profiles 
obtained by exposure of A549 cells with 12 nm SiO2 par-
ticles [78]. Concordant pathway regulation pattern was 
also obtained in transcriptomics and proteomics studies 
of macrophages exposed to Cu, CuO, and TiO2 NPs [61, 
77]. The sensitivity of the different omics technologies 
may however differ. Gioria et  al. used proteomics and 
metabolomics and identified different regulation profiles 
of 5 and 30 nm Au NPs only by proteomics [59].

Inflammation and oxidative stress were reported with 
different frequencies in transcriptomics and proteomics 
studies. Different exposure concentrations in the studies 
is not very likely the explanation as little dose dependency 
in the regulated genes was observed for SiO2 NPs [78]. 
TiO2 and ZnO particles also  caused similar regulation 
pattern over a wide range of concentrations (5–50 µg/ml 
for TiO2 and 0.5–5  µg/ml for ZnO [94]. Another influ-
encing factor may be exposure time. A time-dependent 
transcriptomics study of various NPs showed that upon 
short contact with NPs (1–3 h), cells reacted to different 
types of NPs in a similar way. After 24  h a particle-spe-
cific reaction pattern was seen [93]. When only studies are 
included, where ≥ 3 particles were evaluated (SiO2, TiO2, 
CNTs) it is also found that immune effects are reported 
in the transcriptomics but not in the proteomics in vitro 
studies. The comparison between transcriptomics and 
proteomics data from TiO2 rods and MWCNTs by Tilton 
et al. confirmed that regulation of immune processes was 
more pronounced in gene regulation than in protein regu-
lation. Apparently, NP-induced changes in transcripts of 
inflammatory genes do not obligatorily result in changes 
of protein levels [93]. The reduced reporting of immune 
regulation in proteomics studies is also seen in the in vivo 
studies on TiO2 exposures (Table 2). NPs were applied by 
different routes and inflammation was reported in 5/7 
transcriptomics and 2/5 proteomics studies, while oxida-
tive stress related pathways were identified in 1/7 tran-
scriptomics and 4/5 proteomics studies. The comparison 
is subjected to certain bias. The 5 proteomics studies were 
published by only two research groups. Lack of regula-
tion of inflammation in transcriptomics was seen in stud-
ies where effects in organs far from the application of the 
NPs were analysed, in specific, changes in the ovary fol-
lowing intragastral application and changes in the liver 
of offspring after intratracheal application of the NPs to 
pregnant mice. The metaanalysis by Nikota et al. on TiO2 
NPs and CNT confirmed regulation of inflammation but 
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not of oxidative stress by transcriptomics [51]. Data inte-
gration is a critical and relevant factor for the outcome of 
omics studies. Most researchers use Ingenuity Pathway 
Analysis (IPA) that allows handling of transcriptomics, 
proteomics and metabolomics data. Free software pro-
grams (e.g. Integrated Molecular Pathway Level Analysis, 
IMPaLA) have similar capacities to analyze data obtained 
by all these techniques [95]. IMPALA and iPEAP (integra-
tive Pathway Enrichment Analysis Platform) also allow 
to identify additional pathways from combined datasets 
originating from different omics techniques. The common 
software systems integrate data either based on pathway 
or biochemical ontology, on biological networks or on 
analysis of empirical correlations [96]. The analysis pro-
grams vary in outcome of the analysis (e.g. identification 
of additional pathways, functional enrichment analysis, 
differential correlation analysis, etc.), accepted inputs (e.g. 
genomic, proteomic, metabolomic, biochemical platform 
independent), user platform (e.g. software, web-based) 
and difficulty to use. Empirical correlation analysis is usu-
ally based on R package and more difficult to perform 
than pathway enrichment analysis.

The relatively high number of transcriptomics studies 
on cellular effects of 20  nm Ag NPs can show to which 
extent study results using the same technology, parti-
cles and cells vary. Different pathway regulation pattern 
were reported by six groups that evaluated the effect of 
20 nm Ag NPs by transcriptomics. All of them analysed 
samples at various time points and all but one included 
24 h as a sampling point. Two studies evaluated human 
dermal fibroblasts at high concentrations and two oth-
ers studies HepG2 hepatocytes at low concentrations. 
In the fibroblast studies, but not in the HepG2 studies, 
there was overlap in the reported pathways. Interestingly, 
both studies on fibroblasts did not report regulation of 
oxidative stress, which was reported in most of the other 
studies on Ag NPs. Effects on fibroblasts were verified by 
phenotypic assays in one study of fibroblast and in one 
of the studies on HepG2 cells. Taking into consideration 
that interarray reproducibility may be low [17], disparate 
results can be due to the use of different array or pathway 
analysis platforms. In case of identification of additional 
pathways, as in the fibroblasts study, sensitivity of the 
cells could be different. Regarding the HepG2 studies, the 
different sampling times (≤ 24 h vs. ≥ 24 h) and different 
exposure concentrations may explain the difference. The 
comparison may indicate that transcriptomics data are 
particularly sensitive to the exposure conditions.

As particle handling and biological parameters (passage 
of cells, preparation of particles, exposure, use of expo-
sure medium) may influence the results, only studies that 
included more than one particles or > 1 cell type were ana-
lysed to reveal particle- or cell-specific regulation pattern.

Influence of cell types
Cells differ in their resistance to oxidative stress, in the 
proliferation rate, in the reaction to inflammatory stimuli 
and their reaction to NPs, e.g. CNTs [97]. Particularly for 
particles, the ability of cells for phagocytosis appears to 
be important. Phagocytes ingest NPs to a higher degree 
and the particle accumulation may affect the physiology 
of phagocytes more than that of epithelial cells [98]. The 
reported regulation patterns, however, do not support 
this hypothesis as similar patterns were published for 
macrophages and epithelial cells exposed to ZnO NPs 
[94, 99]. Phagocytosis also appears not to be regulated 
by exposure to NPs. Only two proteomics and one tran-
scriptomics studies reported regulation of phagocytosis 
[93, 100, 101], while the majority of transcriptomics (6) 
and proteomics (5) studies did not report this. The low 
importance of the cell type in pathway regulation was 
corroborated by a meta-analysis on regulation in Caco-
2, THP-1, and small airway cells by TiO2 and CNTs. The 
authors concluded that regulation pattern were more 
particle-specific than cell-specific [93].

Differences in contact between particles and cells 
growing either adherent or non-adherent, may affect 
regulation. Although cells growing in suspension cul-
ture also settle on the bottom of the plate after a certain 
time, they do not form confluent monolayers and this 
may lead to different exposure doses. Differences in cel-
lular particle uptake between adherent and non-adherent 
growing cells have been reported for instance for CNTs 
[102]. The reduced uptake could explain the different 
cytotoxicity of CNTs in cells growing in suspension com-
pared to adherent cells [97]. Consistent with the hypoth-
esis of a different reaction of adherent and non-adherent 
cells, alumina NPs showed a dose-dependent and time-
dependent increase in cytotoxicity for adherent cells 
but only dose-dependent increase for suspension cells 
[103]. The majority of cells that were used in the stud-
ies (Table  1) were adherent growing cells and only two 
studies analysed cells growing in suspension in parallel 
to adherent growing cells [94, 104]. Fe3O4 were tested in 
THP-1 monocytes (growing in suspension) and in adher-
ent growing HepG2 hepatocytes by transcriptomics. 
Since lack of contact may be a reason for a decreased cel-
lular response, cellular uptake of the particles was deter-
mined by Prussian Blue staining. Despite lower uptake by 
THP-1 cells, more genes than in HepG2 cells were regu-
lated, which suggests a higher sensitivity of the immune 
cells to exposure to Fe3O4 particles. The other transcrip-
tomics study, however, did not identify prominent dif-
ferences between Jurkat lymphocytes (suspension) and 
macrophages (adherent growth) when exposed to ZnO 
NPs. In this case different cell contact due to particle sed-
imentation was irrelevant because the authors concluded 
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that the actions were caused by dissolved Zn2+ ions and 
not by intact particles.

Influence of particle properties
Biological effects are influenced by a variety of param-
eters, mainly by material, size, surface properties, and 
shape [105]. A particle-specific regulation pattern would 
not be unexpected but responses to plain particles of dif-
ferent material in transcriptomics and proteomics studies 
(e.g. Fe2O3/SiO2/ZnO; WC/WCCo; SWCNT/MWCNT; 
TiO2/CuO; ZnO/ZrO) in a given cell line after ≥  24  h 
were uniform [53, 77, 100, 101, 106, 107]. Although the 
proteomics study on the effect of Au, Cu and CdTe NPs in 
THP-1 cells suggested particle-specific regulation [108], 
other studies do not give indication for particle-specific 
regulation in RAW 264.7 macrophages [61, 77, 101]. After 
pulmonary application, C60 fullerenes and NiO NPs regu-
lated particle-specific and common transcriptomic path-
ways in mouse lungs [55]. Furthermore, all omics studies 
of pulmonary application of NPs, irrespective of the mate-
rial, reported regulation of immune system and inflam-
mation. These results support the hypothesis of a cell-/
organ-specific reaction pattern. It might be possible that 
the invasive application, in general intratracheal instil-
lation, increased the propensity for inflammation. The 
absence of pulmonary inflammation after inhaled TiO2 
NPs versus instilled NPs supports this assumption [109].

When particles in different sizes and surface properties 
were studied the following can be concluded. Transcrip-
tomics studies identified mainly quantitative differences 
in the regulation by particles of different size. Typically, 
smaller particles caused an effect, while the larger parti-
cles did not (e.g. [80], Table 1). Different pathways (oxi-
dative stress vs. cell signaling), by contrast, have been 
reported for 20 and 100 nm Au NPs in proteomics [60]. 
Surface qualities did not markedly influence the regula-
tion pattern according to transcriptomics and proteomics 
studies. Cellular effects of differently functionalized Au 
particles and bare and differently functionalized Fe3O4 
particles in transcriptomics as well as action of coated 
and plain TiO2 and plain and pegylated SWCNTs sup-
port the missing effect of surface properties (Table  1). 
Comparative metabolomics study on intratracheally 
instilled polystyrene and polymer particles demonstrated 
a correlation between surface hydrophobicity and extent 
of the inflammatory reaction. This finding is consistent 
with results obtained by conventional testing where par-
ticles with hydrophobic surface induced higher immune 
response than those with hydrophilic surface [110].

Studies of spherical and rod-like CuO suggest a small 
influence of shape on gene regulation, with rod-like NPs 
showing a stronger pro-inflammatory effect than spheri-
cal particles [111]. Also the meta-analysis by Tilton et al. 

concluded that exposure to TiO2 rods and CNTs induced 
a particle-specific regulation pattern [93]. This leads to 
the hypothesis that particle-specific regulation may occur 
for non-spherical compared to spherical particles.

In summary, particle parameters caused rather quan-
titative than qualitative differences in the regulation 
pattern.

Correlation to phenotypic assays
For evaluation of the use of omics technologies in toxicity 
testing of NPs it is important to know the extent to which 
pathway regulation corresponds to phenotypic changes. 
The best method for this comparison is the choice of a 
phenotypic assay platform capable to analyse multiple 
parameters in the same cell population. Conventional 
screening comprises a panel of colorimetric, fluorometric 
and luminescent test methods for the detection of apop-
tosis, membrane damage, proliferation, lysosome func-
tion, etc. in parallel exposures. Interference of NPs may 
occur in one or more of these assays [112, 113]. High-
content screening systems (HCS) have the advantage that 
they combine various fluorescent assays with detection of 
morphological changes by bright field microscopy. This 
way, several parameters can be analysed in parallel and 
inconsistency between signal and cell morphology can be 
discerned.

The suggested assay panel representing the most com-
mon targets for a comprehensive analysis of NP toxicity 
included: (i) cytotoxicity (proliferation, membrane leak-
age and integrity, ATP content, mitochondrial potential, 
metabolic activity, calcium flux, apoptosis), (ii) genotox-
icity by DNA cleavage (micronucleus assay), (iii) inflam-
mation (interleukin 1, 8 or tumor-necrosis factor alpha, 
nuclear factor kappa B, or activator protein-1 activation), 
(iv) oxidative stress (ROS generation or GSH), and (v) 
fibrotic potential (tumor growth factor-1 beta, collagens 
1 and 3 and metalloproteinase activity) [114]. These cat-
egories correspond in essence to the pathway regulation 
classes in Table 1. Differences include the lack of fibrotic 
potential and genotoxic potential in the table and the 
addition of proliferation, morphology, vesicles and sign-
aling pathways. Another set of targets for the toxicity 
screening of NPs, namely proliferation, apoptosis, inflam-
mation and genotoxicity, has also been suggested [115].

The available HCS data are ambiguous regarding 
cell-specific reaction to NPs. CdTe NPs induced quan-
titatively different responses in differentiated and undif-
ferentiated murine neuronal cells. Human and murine 
neuroblastoma cells, neural progenitor cells and neural 
stem cells reacted in different way to iron oxide NPs. 
Furthermore, 50  nm amine-functionalized polystyrene 
NPs induced apoptosis in a variety of cells (astrocytes, 
HEK293, A549, HepG2, and hMECD) but not in RAW 
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264.7 macrophages. Lack of cell-specific action, on the 
other hand was reported by other studies. Membrane 
damage and mitochondrial damage induced by TiO2, 
CeO2, and ZnO in sizes between 5 and 20 nm was simi-
lar in BEAS-2B and macrophages [116–119] and 35 nm 
Fe3O4 NPs produced the same profile in murine fibro-
blasts and simian COS cells [120].

The potential of screening by phenotypic assays is lim-
ited in the identification of new modes of action. Except 
for the cytotoxicity screening assays, they can only detect 
a specific cellular effect and the characterization of par-
ticle effects depends on the selection of the right assays. 
This can be seen as disadvantage compared to omics 
techniques in the untargeted form.

Conclusions
Omics platforms could be useful to identify new path-
ways and mechanisms in nanotoxicity not visible in con-
ventional testing. This is, however, not always the case 
for NPs. Studies of polystyrene particles identified cor-
responding targets by conventional assays and whole 
genome transcription arrays [53, 105, 121]. Transcrip-
tomic analysis, on the other hand, identified adverse cel-
lular effects at lower concentrations than conventional 
cytotoxicity screening based on ATP content, dehydro-
genase activity and cell impedance monitoring [78]. The 
comparison is complicated by the fact that the regula-
tion of genes indicates a potential damage but does not 
prove that cell damage will actually occur. Researchers 
reported different regulation patterns by similar NPs 
in the same cells tested with the same technologies. As 
omics data were confirmed by phenotypic assays, dispa-
rate results between research groups may be  caused by 
different exposure conditions. More frequently reported 
regulation of inflammation in cellular transcriptom-
ics than proteomics studies, on the other hand, may be 
linked to the technology. General (technology-independ-
ent) problems with in  vitro testing of NPs and issues 
related to omics technologies that limit their application 
in nanotoxicity testing are listed in Table 3. Different par-
ticle exposure conditions have been suspected to be the 
reason for inter-study differences in phenotypic assays. 

In order to avoid this problem, standard operation proce-
dures (SOPs) for preparation of particle suspensions, use 
of cell lines and preparation of cells have been developed 
(see for instance overview https://www.nanopartikel.
info/nanoinfo/methodik/401-arbeitsanweisung). The 
general use of these SOPs by all researchers may decrease 
variations between studies. The use of confirmatory 
assays (e.g. another omics technique, phenotypic assays) 
is important to demonstrate study quality and verify 
pathway regulation.
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Table 3  Limitations that hinder the broad use of omics technologies in nanotoxicology

Independent from the technology Technology linked

Lack of standardization of particle exposure Request for high sample quality (freezing, protection against degradation)

 Sample pre-treatment Expertise in bioinformatics needed for data analysis

 Cell type used for testing Lack of standardization of sample preparation

 Medium composition Predictive value of the omics techniques not entirely clear

Relevant concentration range
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