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Abstract 

Nano-priming is an innovative seed priming technology that helps to improve seed germination, seed growth, and 
yield by providing resistance to various stresses in plants. Nano-priming is a considerably more effective method com-
pared to all other seed priming methods. The salient features of nanoparticles (NPs) in seed priming are to develop 
electron exchange and enhanced surface reaction capabilities associated with various components of plant cells 
and tissues. Nano-priming induces the formation of nanopores in shoot and helps in the uptake of water absorp-
tion, activates reactive oxygen species (ROS)/antioxidant mechanisms in seeds, and forms hydroxyl radicals to loosen 
the walls of the cells and acts as an inducer for rapid hydrolysis of starch. It also induces the expression of aquaporin 
genes that are involved in the intake of water and also mediates  H2O2, or ROS, dispersed over biological membranes. 
Nano-priming induces starch degradation via the stimulation of amylase, which results in the stimulation of seed ger-
mination. Nano-priming induces a mild ROS that acts as a primary signaling cue for various signaling cascade events 
that participate in secondary metabolite production and stress tolerance. This review provides details on the possible 
mechanisms by which nano-priming induces breaking seed dormancy, promotion of seed germination, and their 
impact on primary and secondary metabolite production. In addition, the use of nano-based fertilizer and pesticides 
as effective materials in nano-priming and plant growth development were also discussed, considering their recent 
status and future perspectives.
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Background
Seed priming is a pre-sowing treatment that causes a 
physiological change in the seed that permits it to ger-
minate more rapidly [1]. It also enhances crop activity by 
stimulating the resistance of plants against abiotic and 
biotic stresses [2]. Priming is the process of pre-treating 
seeds before planting those plants using traditional meth-
ods such as pre-soaking and coating. Alternative seed 
hydration methods (with or without aeration) are used in 
the pre-germination phase, and seeds are then re-dried to 
the usual moisture content of the regular handling pro-
cess such as sowing, packaging, and preservation. Seed 
dormancy can be reduced by treating the seeds in salt 
solutions (halo-priming), water (hydro-conditioning), 
osmotic agents (osmo-priming), plant hormone solu-
tions (hormonal priming), valuable microbe solutions 
(bio-priming), under a magnetic field (magneto-prim-
ing), a solution containing a solid carrier (matri-condi-
tioning), and solutions containing nanoparticles (NPs) 
(nano-priming) [3, 4]. Hydro-priming, osmo-priming, 
hormonal priming, nutri-priming, on-farm priming, and 
bio-priming are examples of current priming processes 
that have shown potential benefits for crops, includ-
ing improved germination rates, germination energy, 
growth and development, increased abiotic and biotic 

stress tolerance, and increased crop yield and micronu-
trient concentrations in cereals [5]. Furthermore, differ-
ent priming agents have a variety of distinct traits and 
possibilities, and they should be optimised for each crop 
species. Priming using nanoparticles (nano-priming) has 
been proven to be more promising than traditional prim-
ing approaches for achieving feasible agricultural yields.
[6]. Nano-priming uses nanoparticles (NPs) with a size of 
less than 100  nm, and "priming" relates to the develop-
ment of stress tolerance under moderate and recurring 
stress [7]. Different types of Nano-priming were shown 
in Fig. 1. It has been reported that seed germination and 
seedling vigor are potentially induced in various crops 
upon nano-priming [7, 8, 9]. Moreover, this may be one 
of the best methods to sort out the dormancy problems 
and increase the germination of seeds in forest species 
(upland boreal), which indicates that nano-priming can 
be useful for forest reclamation purposes [10]. However, 
many studies have demonstrated that high quantities of 
NPs can have toxicological effects on crops including 
lettuce, tomato, wheat, and cucumber [11]. The induc-
tion of plant secondary metabolism to offset the adverse 
environmental stresses results in the synthesis of sev-
eral types of plant secondary metabolites like phenyl-
propanoids, alkaloids, sulphur-compounds (including 
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glucosinolates) and terpenoids. In addition to their role 
in a/biotic stress tolerance, they have been utilized as 
bioactive compounds (antioxidants, anticancer, antimi-
crobials, etc.) and provide protection against various dis-
eases [12–14].

The regulated delivery of nano-encapsulated materi-
als (pesticides & fertilizers) on-site represents a compre-
hensive alternative for improving crops, the surrounding 
habitat and animal health. There is an ongoing effort to 
generate nano-agrochemicals to control the release of 
certain nutrients, thereby preserving the fertility and 
health of the soil [15]. Although nano-priming might be 
an effective approach to induce seed germination and 
attribute tolerance to mild and intermittent stresses, 
it has not been studied in detail. The studies on nano-
priming in plants have been considered as an emerging 
field and the available scanty reports induce us to pro-
vide a review of the potential of nano-priming in crop 
plants. This review briefly describes the nano-priming 
approaches, their mechanisms, and their potential ben-
efits for crops.

General mode of entry and mechanisms of actions of NPs
The plasma membrane has a phospholipid bilayer with 
hydrophilic head groups, and hydrophobic tails acting 
as a barricade for the transfer of molecules. The entry of 
NPs into the cells is proposed by three mechanisms [16]. 

According to the first mechanism, NPs are small mol-
ecules that can easily cross the plasma membrane by a 
direct diffusion process. The passage is concerned with 
numerous features, namely the size, hydrophobicity, con-
stitution, charge, and shape of the particles [17]. In the 
second mechanism, NPs are actively transported into 
the cell by engulfing its cell membrane, a process called 
endocytosis [18]. The third mechanism is by means of 
transmembrane proteins or through channels that regu-
late the movement of NPs into cells [19]. Nevertheless, 
the NP entrance is limited by distinct factors, namely the 
high degree of specificity, the least open possibility, and 
small pores [20]. The mode of transport of NPs from the 
plant cell to the tissues is through foliar/shoots or roots. 
This transfer is mediated by either an apoplastic or sym-
plastic route of transport [21]. It is quite interesting to 
know the way of transport of NPs into various parts of 
the plant. NPs are mainly mobilized from the root system 
through the xylem to the shoot and no downward move-
ment occurs.

Contrarily, foliar spray of NPs translocated through 
phloem and accumulates in plant organs [22]. Apoplas-
tic transport occurs on the outer plasma membrane via 
the extracellular matrix, xylem vessels, and cell walls 
of neighboring cells. It allows NPs to move radially to 
reach the vascular tissue and root central cylinder and 
then ascends to the plant’s above-ground parts [23]. 

Fig. 1 Impact of different types of seed priming in the growth and physiological changes in plants
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Whereas  symplastic  transport involves the movement 
of water and other substances between the adjacent 
cells through plasmodesmata and sieve plates [24]. 
Stanley et  al. suggested that seed priming is the pro-
cess of rapidly imbibing a small amount of water into 
seeds to initiate the pre-requisite metabolic activities 
for pre-germination without radical protrusion [24]. 
By restricting the movement of water to complete the 
radical protrusion, the priming process can extend the 
lag phase and also inhibit the start of the log phase. Ma 
et  al. found that the diffusion of NPs to cotyledons is 
aided by their entry into seeds through the intercel-
lular spaces of parenchymatous tissue [25]. According 
to Guha et al. [26], the acquisition of NPs on the seed 
coat causes the accumulation of reactive oxygen species 
(ROS), which activates numerous chains of downstream 
activities [26]. According to Oracz and Karpinski, the 
spatial and temporal localization of ROS is important 
for cell-to-cell communication and the breakage of 
hydrolytic bonds between polysaccharides in the seed 
endosperm cell wall [27]. Xu et al. investigated Suaeda 
salsa seeds and observed that seed coat phenolic is 
endogenously regulated by the hormonal balance of 
abscisic acid (ABA) and gibberellic acid (GA), facilitat-
ing nutrient passage across seed compartments [28]. 
Most of the NPs were found to be taken up and accu-
mulated in plants through roots, leaves and root hairs.

The plasmodesmata [29] and the carrier proteins 
called aquaporins [30] facilitate NPs entry into the cells 
of the plants. Zhai et al. demonstrated that gold nano-
particles (AuNPs) can be delivered through plasmodes-
mata [31]. Ion channels [32], cuticle membrane and 
stomata [33], vasculature [34] are also possible ways of 
transporting of NPs into plant cells. NPs can also enter 
plants through a variety of entry points, including cell 
wall junctions, pit membranes, hydathodes, casparian 
strips, and extracellular spaces [35]. Throughout the 
scenario of a second system of entering the NPs into 
the plant, the possible pathways of NPs entering the 
roots through rhizoderms, lateral roots, tips and hairs 
of roots [36, 37]. High ionic strength can lead to fast 
aggregation of NPs, while organic macromolecules 
(such as humic acid, fulvic acid, citric acid, and extra-
cellular polymeric substances) can enhance NP stabil-
ity and reduce sedimentation and/or deposition [38]. 
Other low-molecular weight organic acids in root exu-
dates, such as citrate and malate, also complex Fe and 
Cu, to solubilize minerals. Increased solubility through 
complexation can drive uptake into the plant or root-
associated bacteria. For example, citrate complexes Cu 
and enhances Cu uptake by the root colonizer Pseu-
domonas putida [39]. The concentrations of organic 
ligands in the root exudates, which play a crucial role 

in metal bioavailability in the rhizosphere, increase 
with higher doses of Cu ions [40]. The plant parts show 
selective uptake, regulation, biotransformation, distri-
bution and translocation of different kinds of nanopar-
ticles as schematically presented in Fig. 2.

Adhesions and crosstalk between NPs induced ROS 
and phytohormones in breaking seed dormancy
Seed dormancy is referred to as the seeds are incapable 
to complete germination even under favorable environ-
mental situations. It’s known as an adaptive trait prevent-
ing premature germination out of season. The physical 
dormancy of seed is an adaptive feature that is gener-
ally present in higher plants. This kind of dormancy is 
imposed by a water-impermeable layer that impedes 
water and oxygen from the surrounding environment and 
keeps embryos in a viable condition for a long time [41]. 
There are three major types of seed dormancy: (a) harder 
seed coats, in which water and gas (physical dormancy) 
cannot permeate and thus dormancy can be reduced 
mainly through mechanical or chemical processes, creat-
ing cracks in the plants [42](b) Embryos or internal dor-
mancy are caused through endogenous plant hormones 
namely cytokinin, ethylene, indole-3-acetic acid, abscisic 
acid (ABA) and the cells stop growing (c) primary seed 
dormancy is stimulated by germination suppressors, 
including cis-ABA; -d- lucopyranosyl ester; benzoic acid; 
salicylic acid; chlorogenic acid; and coumarin, etc., which 
prevent germination and harvesting"[43].

Nano-priming was found to be effective where seed 
vigour index (SVI) measurement was performed and was 
proven to improve seed cell membrane integrity, thereby 
increasing the phosphorylation efficiency [5]. Seed prim-
ing with micronutrient NPs revealed as a new promising 
mechanism for improving the rate of seed germination, 
seedling vigor, and development [44]. The increased 
perforation of water and nutrients via the seed coat in 
nano-priming seeds enhanced the growth rate and ger-
mination of seedlings [45]. The binding capacity of the 
nano-primed seeds was superior to hydro, vitamins and 
polyethylene glycol (PEG) primed seeds [46, 47]. In gen-
eral, the enhanced water uptake was usually noticeable in 
nano-priming treatments [48]. The uptake of water by the 
seeds is impacted by the equilibrium amidst ABA and GA 
that controls on/off dormancy, in turn, changes in water 
capability thresholds for radicle development [49]. More-
over, ABA and GA hormonal balance control the pheno-
lics in the seed coat and aid in nutrient transport beyond 
the compartments in S. salsa seeds [28]. While it was 
also shown that IAA was synthesized in the endosperm, 
passages to the seed coat in crosstalk with GA with the 
help of the AGL62 transcription factor (TF) [50]. The 
role of IAA in the internalization and movement of NPs 
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in nano-primed seeds and its crosstalk with other hor-
mones (ABA/GA) in inducing the attachment potential 
of NPs should be clarified by analyzing the auxin defi-
cient mutants (msg1; defective in hypocotyl growth) in 
nano-priming and non-priming treatments [51]. Yang 
et  al. demonstrated that several phytohormones were 
responded to NPs treatment during the growth and 
development of plants [52]. It has been described that the 
biosynthesis of GA was induced during the germination 
of seeds, while ABA was inhibited [53, 54]. The priming 
of wheat seeds with various concentrations of iron oxide 
 (Fe2O3) NPs leads to ameliorated germination potential, 
enhanced germination uniformity, and significant total 
germination percentage [55]. Enhanced germination and 
consistency of the metabolism are attributed to repair 
all through absorption [56], germination enhancements 
of metabolites [57], osmotic adjustment and a simple 
decrease in the reduction of lag time for seeds not dried 
after treatment [58]. Fast germination occurs due to the 

synthesis of DNA, RNA and protein during the priming 
of seed [59]. Plant biomass can also be increased due to 
synchronized germination and early stand establishment 
in treated plant seeds [60].

The intrinsic mechanisms of nano-priming-based 
stimulation of seed germination are still ambiguous. 
However, few mechanisms related to it were clearly 
suggested, including the generation of nanopores for 
increased intake of water, bootstrapping ROS/antioxi-
dant network in seeds, hydroxyl radical’s generation 
for slackening the cell wall, and stimulant for hastening 
the breakdown of starch [45]. NP induces ROS when it 
enters the seed coat and so stimulates various cascades 
of downstream events [25]. For example, the underlying 
mechanism of silver (Ag)NPs in the stimulation of seed 
germination was theoretically suggested, comprising (i) 
development of nanopores on the seed coat, (ii) gentle 
ROS stress-persuaded agent, and (iii) acting as a nano-
catalyst for elevated starch-hydrolyzing enzyme activity 

Fig. 2 The plants showing selective uptake, regulation, biotransformation, distribution and translocation of different kinds of nanoparticles, A Plant 
showing the selective uptake and translocation of nanoparticles. B transverse cross-section of the root absorption zone showing the differential 
nanoparticle interaction on exposure. This figure was modified and  adapted from reference [20] with permission. Copyright 2011 American 
Chemical Society
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[61]. Hypothetically, seeds soaked in nano-priming 
solutions (AgNPs) for a limited duration (i.e., 24  h), 
AgNPs generate  OH− radicals which loosen seed coat 
cell walls and endosperm to induce the germination of 
seeds [10]. The elevated ROS molecules can stimulate 
oxidative stress, while at the optimum levels they could 
be recognized as favorable for the germination of seeds 
[62].

ROS is essential to break seed dormancy and induce 
germination, which might be through the induction of 
GA production and shifting of storage proteins [63]. ROS 
signaling interacts with GA and ABA, which are linked to 
seed germination and dormancy [64, 65]. The spatial and 
temporal production of ROS performs a crucial function 
in cell-to-cell transmission and the rupture of hydrolytic 
bonds amidst polysaccharides in the cell wall of seed 
endosperm [26]. Nano-priming-induced seed dormancy 
breaking is probably due to the generation of ROS that 
acts as a positive signal. The aquaporins and ROS play 
a very important role in triggering the germination of 
seeds. Earlier reports demonstrated that in addition to 
intake of water, aquaporins also mediate the diffusion of 
 H2O2 or ROS beyond biological membranes [66]. Hence, 
it was hypothesized that the mobility of water into seeds 
gets shifted after nanopore formation and aquaporin 
genes were activated, thereby facilitating the dissipation 
of ROS  (H2O2) via the cell membrane. The increased ROS 
should be balanced by the seed’s antioxidant network to 
maintain ROS below the basal level during signal trans-
duction. In view of the linkage between ROS and anti-
oxidant systems, nano-primed seeds are observed with 
an increased amount of antioxidant enzymes owing to 
stimulation by AgNPs-based ROS involved in stimulating 
seed germination [7]. Higher germination was exhibited 
in the seeds primed with carbon nanoparticles (CNPs) 
rather than the control seeds [7]. Carboxylic acid-func-
tionalized and stratified CNP’s were set out to be effi-
cient, resulting in improved germination of 90% in green 
alder (Alnus viridis L.) than in control where 60% was 
observed. Multi-walled carbon nanotubes (MWCNTs) 
primed Hopbush (Dodona eaviscosa L.) seeds evolved 
with extraordinary seed germination rates and seedling 
vigor [67]. MWCNTs enable this through elevation of 
the level of moisture in seeds and activate the increased 
absorption of water in root tissues [68]. Carboxylic acid-
functionalized MWCNT (MWCNT–COOH) was very 
essential in improving germination of seed membrane 
lipidome to potentially fix seed dormancy. These obser-
vations were found to be compatible with other seeds 
primed with different NPs in increasing germination rate 
and seed vigor among different agricultural species [43, 
69–71]. Carbon nanotubes (CNTs) act as nano-trans-
porters and can enter cells via cell walls [72]. Moreover, 

the cylindrical shape of CNTs assists water and gas 
absorption, thereby keeping seedling germination and its 
growth at ease in tomato seeds. Interestingly, Aquaporin 
(NtPIP1) gene and its protein (NtPIP1) synthesis were 
significantly higher in tobacco cells subjected to MWC-
NTs with reference to control or treated with activated 
carbon [73]. Furthermore, marker genes like cell division 
(CycB) and cell wall extension (NtLRX1) were also upreg-
ulated in tobacco cells administered to MWCNTs [73]. 
The NtLRX1 gene had been providing support for the cell 
walls during plant growth and also reacts to external sig-
nals [74]. Several studies have indicated that aquaporins 
act as a crucial part in maintaining plant-water relation-
ships, especially during water absorption, seed germina-
tion, cell elongation, regeneration, and photosynthesis 
[75]. ROS and aquaporins together engage in enhancing 
the seed germination process, which was confirmed by 
comparing the nano-primed seeds along with unprimed 
control and other priming treatments [10]. The increased 
ROS activates the genes in the aquaporin signaling path-
way and imposes modifications to phosphorylation sites 
in important aquaporin proteins, resulting in enhanced 
water uptake [76]. ABA regulates crucial aquaporin 
genes, namely PIP2, NIP1, TIP3 and TIP4 during germi-
nation [77]. Similarly, in primed seeds, the rapid water 
uptake is due to the induction of PIP1 and PIP2 genes 
[47].

The induction of metallothionein genes (MT1 & 
MT4) in tomato seeds treated by nano-priming indi-
cates their probable participation in ROS signaling 
during germination of NPs treated seeds [48]. A consid-
erably enhanced level of antioxidant enzymes, namely 
superoxide dismutase (SOD) and catalase (CAT) was 
observed in nano-primed seeds compared to con-
trol. Thus, the greater level of  H2O2 detected in nano-
primed seeds could really serve as a signaling agent and 
was coherent with the concept of oxidative windows, 
leading to greater germination and hastened seedling 
growth compared to unprimed and primed seeds [10]. 
Korishettar et al. concluded that the NPs of Zn and Fe, 
which have been implemented together with the seed 
polymer, are capable of entering seeds using the cracks 
and holes available on the seed coat during the seed 
imbibition and would enhance enzymatic activity and 
free radical scavenging by quenching the free radicals, 
thereby reducing oxidative damage [78]. The dehydro-
genase activity as the major cell respiration enzyme, 
which is higher in nano-primed seed roots than in non-
primed control treatments and other processes, can 
be directly linked to fast water consumption in nano-
primed seeds. Higher water consumption can thus 
improve the germination and development of seeds 
through complex networks.Moreover, in recent studies, 
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various metal-based NPs such as AgNPs [79, 80], gold 
(Au)NPs [81], copper (Cu)NPs [82, 83], iron (Fe)NPs 
[84], iron pyrite  (FeS2)NPs [85], titanium dioxide  (TiO2)
NPs [86, 87], zinc (Zn)NPs [88], zinc oxide (ZnO)NPs 
[89–91], and carbon NPs such as fullerene [92] and 
carbon nanotubes [93] have been utilized used as pre-
treatment of seeds for activating germination, growth, 
and stress tolerance in various crop species. Gold NPs 
(AuNPs) seed priming often increases water absorp-
tion in maize plants [7]. Water consumption for seed 
germination is extremely important as mature seeds are 
often dried in nature and require ample water to begin 
the metabolism and growth of the cells [94]. Sunflower 
(Helianthus annuus) seed germination was improved 
when the seeds were soaked in nanosilicon solutions 
at lower concentrations (0.2 and 0.4  mM). The result-
ing soaked seeds exhibit enhanced germination rate, 
root length, and SVI [95]. The green synthesized AgNPs 
(from Psophocarpus tetragonolobus (winged bean) leaf 
extract) seed priming causes a higher germination rate, 
GVI compared to control and revealed genetic stability 
[96]. When the seeds of the wheat crop were subjected 
to silver, copper and Fe NPs, the highest germination 
percentage was obtained on iron NPs primed seeds. 

Similarly, the application of Fe NPs stimulated root and 
shoot growth, whereas exposure to copper NPs sig-
nificantly reduced it. nano-priming induced seed ger-
mination was represented in Fig. 3 [92]. Hence, it was 
concluded that copper has a repressive action and Fe 
has an activating effect on wheat seed germination and 
growth [97].

Effect on growth and physiology
Nanotechnology is undeniably playing an important role 
in reviving the agriculture and food production indus-
tries [98]. NPs have proved to be a promising alterna-
tive to the manufacture of nano-fertilizers compared to 
conventional fertilizers. Thus, the utilization of nano-
fertilizers in agriculture can reduce excess chemical fer-
tilizer usage, thereby controlling environmental pollution 
[99]. Because of their benefit in enhancing nutritional 
attributes and tolerance towards stresses in plants, the 
implementation of NPs was raised. Agricultural nano-
formulations were developed by using carriers which can 
entrap, encapsulate, absorb, or attach active molecules. 
Different modes of nano-fertilizer applications, such as 
soil, foliar spray, seed priming, seedling root dip, fertiga-
tion drip tape, and aerosol dusting have been employed 

Fig. 3 Influence of nano-priming on the primary and secondary metabolism in plants
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routinely [99, 100]. Various applications of nanotechnol-
ogy in agriculture development were described in Fig. 4 
[98]. NPs function as a major action in the plant’s mor-
phology, growth and physiology [86]. It may precisely or 
presumptively affect the physiological features through a 
change in the formation of ROS, peroxidase, SOD, CAT 
enzyme activities, and modifies the leaf ’s protein, chlo-
rophyll, and total phenolic content (TPC) [101]. The 
large changes in morphological parameters have been 
distinctly pertinent to the increase in the physiological 
attributes such as uplift in enzyme activities, greater pho-
tosynthetic rate, and significant nitrogen and phosphorus 
metabolism [102]. Table 1 shows the influence of nano-
priming on plant growth and metabolism. Plant health 
has effectively been determined by a few parameters 
such as the leaf area, length of shoot and root, and also 
the root weight. The fresh weight of the root and shoot 
of wheat was deliberately increased by a lower level of 
 TiO2 NPs (10 and 100  ppm, size ~ 20  nm), whereas the 
same can be decreased with elevated  TiO2 NPs concen-
tration (> 100 ppm) [146]. There was an improvement in 
germination rate and root length at low Ag NPs concen-
trations, which could be attributed to less ROS molecule 
production [79, 80]. ROS mediates the acceleration of cell 
cycle entry to  G0/G1 leading to a complementary activity 
in the plant cell cycle machinery [147]. Meanwhile, when 

treated with a higher concentration, seedling growth was 
affected and was believed to be due to the smaller size 
of synthesized silver NPs [148], which translocate easily 
to the upper portion of the plant and cause greater tox-
icity [149]. Also, Navarro et  al. confirmed that AgNPs 
cause toxicity to plants where the cells are affected by 
their size and the coating [150]. Mahakham et al. detailed 
a mechanism of nano-priming mediated germination 
of seeds utilizing biocompatible AgNPs. AgNPs capped 
with phytochemicals from plant extracts, referred to as 
nano-priming agents, lead to enhanced seed germina-
tion potential via the activation of aquaporin genes with 
increased ROS generation and accumulation [47]. Previ-
ous results suggested that there was an enhancement in 
the seed percent germination, germination rate index, 
SVI, fresh biomass, length of radicle and plumules, when 
lower nano-anatase concentration was used. The most 
appropriate concentration of nano-anatase was found to 
be 7.5℅ [151].

Laware and Raskar published in their research paper 
that a low concentration of  TiO2 NPs upgraded the seed 
germination percentage and seedling growth rate with a 
synchronous elevation in the amylase and protease activ-
ities [151]. In oriental lilies, AgNPs enhanced the content 
of potassium (K) while decreasing the content of magne-
sium (Mg), phosphorus (P), and sulphur (S) [152]. At the 

Fig. 4 Various applications of nanotechnology in agriculture. This figure was modified and  adapted from reference [99] with copyright permission
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plant level, these mechanisms may comprise genotoxic-
ity, plant-related variations in the uptake of minerals, 
production of ROS, which suppresses photosynthesis, 
and the exchange of gases, and may lead to reduced plant 
growth and biomass. When MWCNTs were used, there 
was a positive response recorded towards the plant 
growth against the untreated crops [153]. Single-walled 
carbon nanohorns (SWCNHs) at its highest concen-
tration (100  µg/mL) made all crops germinated except 
tomato. However, there was the greatest germination rate 
of the tomato crop at its lowest concentration (25 µg/mL) 
of the nanomaterials [135]. MWCNTs acting as a nano-
fertilizer not only initiate the growth and development 
of plants, but also promote photosynthesis, induce aqua-
porin expression, antioxidant defense, and supplement 
nutrition [154]. Nanomaterials supplemented on pepper 
leaves could act as a fertilizer such as the foliar sprayed 
CuO NPs, ZnO NPs, MgH NPs and MgO NPs at a proper 
concentration was found to increase the chlorophyll con-
tent, plant’s height and leaves growth more than the con-
trol [155].

ZnO NPs foliar spray with a limited concentration of 
10 mg/L remarkably increased the plant biomass, shoots 
and root length, and root area of cluster bean. In addi-
tion, they appreciably boosted the contents of chloro-
phyll (276.2%), whole soluble leaf protein (27.1%), and 
activities of various enzymes like acid phosphatase 
(73.5%), alkaline phosphatase (48.7%), and phytase 
(72.4%) as compared to control. The total lipids, pro-
teins, amino acids, thiols, and chlorophyll concentra-
tions were significantly increased after being treated with 
varying concentrations of sulfur and zinc oxide NPs as 
compared to the untreated control [156]. It has also been 
shown that better seed germination, root-shoot length, 
pigment content, improved total antioxidant activities 
(TAA), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and fla-
vonoid content, and decreased lipid peroxidation were 
observed after nano zinc sulfide (nZnS) treatment [157]. 
Rai-Kalal and Jajoo investigated the beneficial impacts of 
seed priming with ZnO NPs in wheat cultivar H–I 1544 
and observed that wheat seeds primed with ZnO NPs 
(10 mg/L) had a significant positive impact on seed ger-
mination efficiency and seed vigour index (calculated by 
multiplying germination (%) and seedling length) when 
compared to unprimed (control) and hydro primed seeds 
[158]. Yuan et al. studied the cellular response of Capsi-
cum annuum to Fe NPs [159]. Lower concentrations of 
Fe NPs resulted in significant plant growth compared to 
high concentrations. This is likely due to the aggregation 
of most iron NPs in the cell walls, which shifted further 
into roots via the apoplastic (non-living) pathway. While 
at a low or optimal level, NPs contribute to controlling 

vascular bundle development, increasing chloroplast 
numbers, and grana stacking. After absorption of iron 
NPs in the roots were further mobilized to the leaves and 
stems in available patterns to support the growth of the 
plants. Iron oxide NPs priming in chickpea improved 
germination significantly along with enhanced the level 
of lipophilic non-enzymatic antioxidants [160]. The nan-
oformulation of fertilizers (nano iron chelate and nano 
zinc) enhanced the phosphorous levels, biomass, crude 
protein and soluble sugar contents in Zea mays L as com-
pared to chemical types of fertilizers [161].

Bio-priming of seeds with plant growth-promoting 
rhizomicrobes (PGPRMs), like nano-priming, is an 
important approach in sustainable agriculture [162, 163], 
particularly in vegetable plantations [164]. Bio-nano-
priming is a convergent field of applied technology that 
aims to enjoy the combined benefits of nano and bio-
agent application growth of agricultural plants, help-
ing in enhanced crop cultivation [165]. Nanoparticles 
revealed three modes of association with crops, PGPRMs 
and the soil elements. When PGPRMs are treated with 
metal or metal oxide NPs, they might cause changes in 
their profiles of the synthesis of secondary metabolites 
and proteins in a concentration-based manner [166]. 
The application of metal/metal oxide or carbon NPs 
at a minimal level to broth cultures of microbial cells 
improved the production of plant hormones (IAA) [167] 
and siderophores (metal-chelating ligands) [168, 169] 
that may fine-tune the plant growth-promoting benefits 
in treated crops through co-immobilization/coating of 
the crop seed [170]. The approach to bionano-priming 
might comprise coadministration of NPs and PGPRMs 
on seed [171], application of immobilization of helpful 
PGPRMs on nanomaterial matrix to the surface of sub-
jected seeds [171], administration of PGPRMs or its bio-
active compounds, namely microbial cyclo-peptides, on 
the seed surface [172], followed by exposure of the NPs 
through foliar or seedling roots [173], and coating seeds 
using NPs primed PGPRMs [174]. Hence, this strategy 
can be useful for enhanced seed germination, SVI and 
plant growth.

Influence of Nano‑priming in primary metabolism
Primary metabolic pathways are crucial for a plant’s life, 
and the metabolites synthesized are directly involved 
in plant growth (photosynthesis) and metabolism. The 
impact of nanoparticles on plant metabolism was shown 
in Fig. 5 [175]. Fullerenol nano-priming in wheat boosted 
primary metabolism to increase growth and productiv-
ity under salt stress, as evidenced by the concentration-
dependent drop in phenolics and flavonoids content 
[176].
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Impact on photosynthesis
Photosynthesis is the process through which higher 
plants, algae, and certain microorganisms convert sun-
light energy into energy-rich organic compounds and 
store it. Nano-priming has derived its various outcomes 
from the plant’s photosynthesis mechanism [5]. Silicon 
dioxide  (SiO2) NPsboost the synthesis of photosynthetic 
pigments and carbonic anhydrase activity, ultimately 
improving the photosynthetic rate [103]. Siddiqui et  al. 
found that  SiO2 NPs in Cucurbita pepo leaves, not only 
upgraded the photosynthetic competence but also 
improved plant defense activity to counter saline stress 
by increasing chlorophyll content, water capacity, net 
photosynthetic rate, amount of transpiration, proline and 
carbonic anhydrase, and stomatal conductance [103]. The 
priming of Egyptian roselle (Hibiscus sabdariffa L.) cul-
tivars with a lower concentration (0.01%) of aluminum 
oxide  (Al2O3) NPs) significantly improved growth fea-
tures (leaf area, length of shoot, root, fresh and dry mass), 
as well as physiological and biochemical functions (carot-
enoid level, chlorophyll a, chlorophyll b, soluble sugars, 
protein, proline), and the functions of various antioxidant 

enzymes such as SOD, CAT, peroxidase (POD), and 
ascorbate peroxidase (APX). Thus, seed priming in Egyp-
tian roselle (H. sabdariffa L.) cultivar could stimulate 
positive impacts at lower concentrations [177]. Pradhan 
et al. described that manganese (Mn) NPs upgraded the 
photosynthetic rate by mediating water splitting in the 
electron transport system [178]. During photosynthesis, 
a crucial enzyme called Rubisco (Ribulose-1, 5-bisphos-
phate carboxylase/oxygenase) is essential to catalyze and 
integrate carbon dioxide into biological compounds. In 
chickpea,  TiO2 NPs stimulated the photosynthesis pro-
cess and the Rubisco enzyme activity [179]. Samadi et al. 
showed that  TiO2 NPs (200 mg/L) employed on Mentha 
sp. manifested a positive response on chlorophyll a and 
b and carotenoid contents [180]. Similar observations by 
Yang et al. showed that  TiO2 NPs improved photosynthe-
sis by stimulating light absorption in the chloroplast, nor-
malizing the provision of light energy from photosystem 
I to photosystem II, oxygen evolution, water splitting, 
and raising Rubisco enzyme activity [181].

Iron-based NPs play a pivotal function in electron 
transport while respiration and photosynthesis. These 

Fig. 5 Influence of seed nano-priming on the seed germination potential and plant growth
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are transported to the leaves to help photosynthesis, 
the reproductive organs [182] and to the seeds to ini-
tiate embryogenesis [183]. As described by Rui et  al. 
[184],  Fe3O4 NPs can be an iron-rich origin for Arachis 
hypogaea plants, substituting typical regular sources of 
iron. The supplementation of  Fe3O4 NPs improved plant 
height, root length, chlorophyll and Fe levels, and modu-
lated the activity of antioxidant enzymes and phytohor-
mones (diminished ABA and enhanced  GA3 content). 
Seed priming with low zero-valent iron nanoparticles 
(nZVI) concentration (< 80  mg/L) increased the pho-
tosynthetic pigments in rice seedlings and favorably 
induced the growth of the rice seedlings. Chlorophyll 
a/b ratio revealed no aberrant alterations in control and 
nano-primed seedlings designated that no stress was 
stimulated owing to the administration of nZVI at a 
lower concentration [6]. When rice (Oryza sativa L. cv. 
Gobindobhog) seeds were primed for 72 h with 20 mg/L 
nZVI, several biochemical and physiological changes 
were observed at various time points (5, 10, 20, 40, 60, 
and 80  h). Apart from that significant up-regulation of 
genes like OsGA3Ox2, OsGAMYB, which are respon-
sible for controlling the activity of many hydrolases and 
mediating the efficient mobilization of seed storage food 
reserves, was noticed in both the nZVI and the diphe-
nyleneiodonium (DPI) and nZVI co-primed sets. In 
wheat leaves, photosynthetic pigment content was found 
to be higher after aluminum NPs treatment [185]. Simi-
larly, cesium oxide NPs not only promoted the transpira-
tion rate and stomatal conductance in kidney beans [186] 
but also increased the activity of Rubisco in soybean 
[113]. In the mung bean leaves, gold NPs intensified the 
rates of electron transport and oxygen evolution in chlo-
roplasts [187].

Starch metabolism
α- Amylase is a hydrolytic enzyme which degrades the 
reserved carbohydrates to soluble sugars in order to sus-
tain an active respiratory metabolism that aids in the 
germination of seeds and plant growth prior to pho-
tosynthesis [188]. Increased α-amylase activity, which 
causes rapid starch degradation in germinating seeds 
of nano-priming treatment, may have an indirect effect 
on increased germination rate and seedling vigor [47]. 
A high sugar concentration in the cells reduces osmotic 
potential and water potential, triggering seedling growth 
and accelerating germination [47]. Man et  al. observed 
that the surface of starch granules was initially pitched 
by α-amylase followed by protruding into inside and 
the granule from the inside out, suggesting an increased 
stimulation of the activity of α-amylase in the seeds 
treated by the nano-priming technique [189]. Moreo-
ver, this stimulation of α-amylase production is reliant 

on GA activity. For instance, Mahakham et  al. reported 
that the absence of α-amylase biosynthesis is linked 
to the lack of GA [47]. This indicates that α-amylase 
induction is reliant on GA activity and reveals signal-
ing crosstalk present among NPs, α-amylase and GA in 
nano-primed seeds. While the upstream GA signaling 
factors involved in α-amylase-mediated starch hydroly-
sis are unknown. It should be interesting to explore the 
crosstalk between plant hormones and sugar signaling 
cues sponsored by nano-priming. AgNPs were usually 
coated with phytoconstituents such as the plant extract 
of kaffir lime. Phytosynthesized AgNPs primed on old 
rice seeds at a concentration of 5–10  ppm considerably 
revamped germination and seedling vigor with reference 
to unprimed,  AgNO3, and traditional hydropriming rice 
seeds [47]. Furthermore, the activities of α-amylase and 
total soluble sugars were also determined in seedlings 
of rice for examination of starch metabolism. Notably, a 
remarkable increase in α-amylase activity was observed 
after 6  days of germination in nano-primed rice seed-
lings compared to unprimed and other primed seedlings. 
Nano-priming not only increased α-amylase activity 
(greater soluble sugar facilitates seedling growth) but also 
up-regulates aquaporin genes in germinating seeds [47]. 
AgNPs primed seeds could induce gentle oxidative stress, 
triggering the germination of seeds through loosening of 
the cell wall. The ability of AgNPs to penetrate the seeds 
might behave as a nanocatalyst in the enzymatic digestion 
by α-amylase and hence rapidly magnify the rate of the 
reaction [47]. Starch hydrolysis occurring at a faster rate 
was believed to occur due to a change in the α-amylase 
conformation, but the active site of the enzyme retained 
its catalytic function [190]. As a result of the enzymes 
conformational change, the enzyme activity and stabil-
ity were intensified leading to greater starch degrada-
tion, and this may be associated with the interaction of 
molecules overlaid onto the coverings of silver nanocar-
riers. Furthermore, the induced α-amylase could feasibly 
interplay with functional groups present on the coverings 
of phytochemicals-overlaid AgNPs forming thiol link-
ages and performing catalysis [47]. Like AgNPs, it was 
proposed that  FeS2 NPs could mimic amylase activity to 
boost starch degradation in spinach seeds [191]. Nano-
priming with nZVI also remarkably boosted amylase and 
protease activity during germination, thereby leading to 
early radicle emergence [25]. Laware and Raskar out-
lined those lower levels of  TiO2 NPs upgraded the seed 
germination and seedling growth rate while simultane-
ously increasing the amylase and protease enzyme activ-
ity [151]. Correspondingly, Yang et al. revealed that  TiO2 
NPs are involved in water absorption, thus improving 
seed germination and beneficial in boosting their photo-
synthetic efficiency and nitrogen metabolism [181]. The 
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chemo blended AgNPs treated wheat exhibits reduced 
proteins related to carbohydrate metabolism (glycolysis), 
redox, and mitochondrial electron transport chain [192] 
while enhancing the proteins associated with secondary 
metabolism and increasing the enzymes of antioxidant 
machinery like SOD, CAT, and peroxidase [193]. Proteins 
related to glycolysis were decreased in soybean upon 
exposure to AgNPs [194], while enhanced with Fe and 
CuNPs [195]. Fe NPs increases the proteins associated 
with photosynthesis and protein metabolism [196].

Role of nano priming in lipid metabolism in overcoming 
seed dormancy
A relatively few studies have shown cell membrane lipid 
modifications can contribute to alleviating seed dor-
mancy in crops. Seed dormancy in agricultural crop 
species could be aided by lipid modification in the cell 
membrane [197, 198]. At the time of germination, mem-
brane lipids on the seeds were noted to be reorganized 
by the steady-state increase of plastidic lipids, where the 
content of PA (phosphatidic acid) initially diminished and 
gradually increased, followed by a final decrease in soy-
beans [199]. Fatty acid variation with respect to embryo 
dormancy and a distinctive alteration in linoleic acid con-
tents in the seeds of Amaranthus albus before and after 
cracking dormancy was also noticed [200]. The modula-
tion of lipid metabolism in plants was recently shown to 
be induced by NPs [52, 99]. The roles of lipid metabolism 
in overcoming seed dormancy the membrane lipids in 
upland boreal forest plant species (buffaloberry (Schep-
herdia canadensis L.) and green alder (Alnus viridis L.) 
were examined to see if seed membrane lipid metabo-
lism plays a role in the release of dormancy in seeds after 
priming with NPs.

In each of these upland species, roughly 12 membrane 
lipid classes and related molecular species have been 
determined quantitatively. These comprise lysophos-
phatidylcholine (LPC), cardiolipin (CL), PA, lysophos-
phatidylethanolamine (LPE), phosphatidylethanolamine 
(PE), phosphatidylcholine (PC), phosphatidylinositol 
(PI), sulfoquinovosyl diacylglycerols (SQDG), phosphati-
dylglycerol (PG), digalactosyldiacylglycerol (DGDG), 
phosphatidylserine (PS), and monogalactosyldiglyceride 
(MGDG) [197]. Green alder seeds (A. viridis L.) primed 
and layered using MWCNT–COOH result in improved 
germination rate (90%) and seed membrane lipidome to 
effectively reconcile seed dormancy [198]. The recon-
figuration of C18:3 enriched fatty acids in the seed 
membrane lipid moieties: PG16:1/18:3, PC18:1/18:3, 
PE18:3/18:2, and DGDG18:3/18:3, which corresponds to 
an increase in germination, seedling vigor, and releasing 
the dormancy of both embryo and seed coat in upland 
boreal forest species. Precisely, the biosynthetic avenues 

including PA, DG, PC, and PE seem to be regulated by 
MWCNT–COOH, easing seed coat and embryo dor-
mancy, thereby improving germination and SVI in upland 
boreal forest species [197]. Martinez-Ballesta et al. [201] 
showed that nano-priming using carbon NPs (CNPs) in 
broccoli upgrades the aquaporins, ions, and water mobi-
lization in cell membranes. CNPs assisted in balanc-
ing electrostatic interactions in cell membranes and the 
membrane developed new lipid domains, or rafts, as an 
outcome of the CNPs activating the lipid metabolism.

Modulation of plant secondary metabolism by NPs
Several previous studies have indicated that ROS-induced 
signaling events play a pivotal part in the activation of 
secondary metabolism [202]. Moreover, the generated 
ROS acts as a signal for other messengers such as jas-
monic acid (JA) [203], salicylic acid (SA) [204], ethylene 
(ET) [205], nitric oxide (NO) [206], and brassinosteroids 
(BRs) [207], which has the ability to regulate secondary 
metabolisms directly or indirectly [101]. It is believed 
that the NP-induced responses include enhanced ROS, 
cytoplasmic  Ca2+ and induction of mitogen-activated 
protein kinase (MAPK) cascades that resemble other 
abiotic stresses [208]. To support this notion, it was 
also reported that genes related to ROS pathways and 
ion homeostasis suggesting that ROS and conserved 
 Ca2+  transduction cascades have been found to be 
expressed in the root transcripts of cotton seeds primed 
with poly (acrylic acid) coated CeO NPs under salt stress 
[209]. AgNPs induce  Ca2+ bursts and ROS induction 
when binding to plasma membrane-bound receptors in 
Arabidopsis [210]. Proteomic studies of AgNPs treated 
rice roots also revealed the presence of  Ca2+ levels and 
associated signaling pathway proteins [211]. The hypoth-
esis of the above studies also indicated that AgNPs or 
ions liberated, interfere with cell metabolism by affix-
ing to  Ca2+ receptors,  Ca2+ channels, and  Ca2+/Na+ 
ATPases. As recognized by calcium-binding proteins 
(CaBPs) or other NP-specific proteins, NPs either resem-
ble  Ca2+or signaling molecules in the cytosol [176]. Phos-
phorylation of MAPKs and induction of downstream 
TFs result in the transcriptional reprogramming of the 
metabolism of secondary metabolites in plants [212]. 
There is no direct evidence for the involvement of MAPK 
pathways in plant-NP interactions is available. However, 
it was hypothesized that when exposed to AgNPs, plants 
would most likely use the MAPK cascade [213].

NPs induced secondary metabolites production
Plants may be protected by a process that enhances their 
bioactive compounds to resolve metal toxicity under abi-
otic stress conditions [214]. Gene expression analysis is 
a powerful approach to understanding the molecular 
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mechanisms underlying reactions in plants exposed to 
nanomaterials. Biosynthetic genes for flavonoid and 
anthocyanin in Arabidopsis are up-regulated upon the 
exposure of AgNPs [215]. Anthocyanin pigment 1 (PAP1) 
and anthocyanin synthase 1 (ANS1) genes have been 
implicated in anthocyanin biosynthesis, which is fre-
quently synthesized during abiotic stresses. The levels 
of PAP1 and ANS transcripts were slowly increased at 
elevated concentrations (5.0 and 10.0  mg/L) of AgNPs 
treated turnip seedlings, which also correlated with a 
higher accumulation of anthocyanin [79]. PAP1 and 
ANS1 expression in Chinese cabbage seedlings was 
gradually increased from low to high concentrations of 
AgNPs (250 and 500  mg/L) [80]. Similarly, the produc-
tion of anthocyanin and the expression of their pathway 
genes upon AgNPs treatment suggest that AgNPs could 
activate the biosynthesis of anthocyanin in Chinese cab-
bage seedlings [80].

The phenylalanine ammonia-lyase (PAL) and chalcone 
synthase (CHS) enzymes, as key enzymes in the pro-
duction of phenylpropanoid compounds, serve a prime 
role in plant responses to a/biotic stresses [216]. It is 
noted that in numerous plants, environmental stresses 
have been shown to affect the expression of the PAL 
gene [217]. The expression of PAL and CHS were sig-
nificantly induced by the AgNPs (40  ppm) treatment in 
Portulaca oleracea seedlings compared to control [216]. 
PAL expression was significantly induced by AgNPs in 
turnip [79] and Chinese cabbage seedlings [80]. In com-
parison to unprimed and hydroprimed controls, Kumar 
et  al. identified that winged bean seeds (Psophocarpus 
tetragonolobus L.) primed with 50  mg/L AgNPs signifi-
cantly improved growth performance (GP) by 53.64 per-
cent and 31.54 percent, respectively, and SVI by 68.24% 
and 57.59% [96]. The flavonoid and phenolic biosynthe-
sis pathway genes such as PAP1, ANS, PAL, and flavonol 
synthase (FLS) displayed enhanced expression in B. rapa 
ssp. rapa seedlings upon priming with CuO NPs [101]. 
In association with the gene expression, the CuO NPs 
(500  mg/L) treated turnip seedlings accumulated the 
highest total phenolic and flavonoid content in B. rapa 
ssp. rapa seedlings [101]. CuO NP (500 mg/L) treated B. 
rapa ssp. rapa seedlings had significantly higher levels of 
hydroxybenzoic acid (604.43 g/g), hydroxycinnamic acid 
(720.78  g/g), and flavonol (1344.49  g/g) than untreated 
seedlings (390.68, 490.86, and 828.42  g/g, respectively 
[101]. Similarly, NiO NPs (250 and 500  mg/L) were 
shown to induce the expression of phenolic biosynthesis 
genes like PAP1, ANS, and PAL in Chinese cabbage seed-
lings [218]. NiO NPs (500  mg/L) treated Chinese cab-
bage seedlings exhibit notably elevated hydroxybenzoic 
acid (921.65  μg/g), hydroxycinnamic acid (890.38  μg/g), 
and flavonol (1228.18  μg/g) concentrations compared 

to untreated plants, at 659.41, 706.62, and 659.41  μg/g, 
respectively. Similarly, TPC and total flavonoid content 
(TFC) were higher in NiO NPs (500  mg/L) adminis-
tered seedlings than in control plants [218]. AgNPs (20 & 
50 ppm) treated seedlings of Echium amoenum revealed 
a considerable increase in total phenolic content com-
pared to the untreated seedlings [219]. The application 
of silver (Ag) and platinum (Pt) NPs enhanced the TPC 
level by 17 and 15%, respectively, compared to the con-
trol seedling of lettuce [220].

Upon exposure to the least concentration of AgNPs 
(1.0 mg/L) in O. sativa enhanced the carotenoid biosyn-
thesis-related genes (CYB and ZEP1) [221]. While higher 
concentration of AgNPs inhibits the carotenoid produc-
tion in the rice, turnip and Chinese cabbage seedlings 
[79, 80, 221]. Yue et al. have shown that lignin biosynthe-
sis genes ZmPAL, ZmCCR2 (Cinnamoyl-CoA reductase) 
and ZmCAD6 (Cinnamyl alcohol dehydrogenase) have 
been up-regulated in maize roots exposed to lantha-
num oxide NPs  (La2O3 NPs) [222]. Wang et  al. stated a 
notable decrease in the chlorophyll synthesis genes such 
as Chlorophyll an oxygenase (CAO), Chlorophyll syn-
thase (CHLG), Copper response defect 1 (CRD1), Magne-
sium-protoporphyrinix methyltransferase (CHLM), and 
Mg-chelatase subunit D (CHLD) in ZnO NPs treated 
Arabidopsis plants [223]. Expression of carotenoid syn-
thesis genes, primarily ZDS, has increased profoundly 
in ZnO NP supplemented plants [223]. The level of chlo-
rophyll a and b declined by > 50%, whereas the level of 
carotenoids remained hugely uninfluenced in Arabidopsis 
plants treated with 300 mg/L ZnO NPs [223]. The expo-
sure to zinc oxide and selenium NPs profoundly stimu-
lated the expression of rosmarinic acid synthase (RAS) 
and hydroxyphenyl pyruvate reductase (HPPR) genes in 
Melissa officinalis [224]. El-Badri et  al. used SeNPs and 
ZnO NPs during seed imbibition and the early seedling 
stage in two rapeseed cultivars to investigate the effect of 
nano-priming on plant hormones and germination pro-
cesses during salinity stress. Nano-treatment increased 
the chlorophyll a, b, and total chlorophyll content, as 
well as the final germination percentage, germination 
rate, seed microstructure, and antioxidant activity [225]. 
Genes related to glucosinolate (GSL) biosynthesis and 
regulation (BrMYB28, BrMYB29, BrMYB34, BrMYB51, 
St5C and SUR1) have been increased in seedlings treated 
with AgNPs (5 and 10  mg/L) and (250 and 500  mg/L) 
respectively in turnip and Chinese cabbage young plants 
[79, 80]. Zhang et  al. reported that the GSL synthesis-
based plant defense pathway might be one of AgNPs 
exposure hallmarks [226]. The expression of aliphatic 
GSL (BrMYB29 and BrMYB28) and indolic GSL regula-
tory genes (BrMYB51 and BrMYB34) were upregulated 
in CuO NPs (250 and 500  mg/L) treated turnip young 
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plants [82]. Similarly, CuONPs (500  mg/L) exposure to 
young plants has considerably improved the content of 
aromatic, indolic and aliphatic GSLs in B. rapa ssp. rapa 
[82]. The exposure of Chinese cabbage young plants 
to nickel oxide nanoparticles (250 and 500  mg/L), in 
turn, upregulates the GSL TF genes namely BrMYB28, 
BrMYB29, BrMYB51, and BrMYB34 [218]. UHPLC-TQ-
MS revealed five aliphatic glucosinolates (glucoallysin, 
gluconapin, progoitrin, glucobrassicanapin, and sinigrin), 
four indolic glucosinolates (4-hydroxyglucobrassicin, 
4-methoxyglucobrassicin, glucobrassicin and neogluco-
brassicin), and one aromatic glucosinolate of glucona-
sturtiin. Aliphatic, indolic and aromatic glucosinolates 
were expressively amplified in the nickel oxide nanopar-
ticles (500  mg/L) exposed Chinese cabbage seedlings 
[218]. In addition to nano-priming, the application of 
nanomaterials was used to induce the production of phy-
tochemicals in plant cell cultures, cell lines, callus cul-
tures, and hairy root cultures (HRCs). AgNPs (900 mg/L) 
treated in Artemisia annua HRCs lead to the induction 
of artemisinin production by up to 3.9 folds along with 
higher oxidative stress, MDA generation, and CAT activ-
ity [227]. Fenugreek treated with AgNP (2  mg/kg) leads 
to significant plant growth and diosgenin accumulation 
[228]. Anthocyanins and the genes related to flavonoid 
biosynthesis were increased in AgNPs treated A. thaliana 
[215]. Cadmium oxide (CdO)NPs-treated barley plants 
showed enhanced production of ferulic acid and isovi-
texin [229].

Cytotoxic and genotoxic responses of Nano‑priming
As a result, the nanoparticles have both negative and 
positive effects on seed germination, root elongation, 
cell division, growth, and metabolic functions as a result 
obtained from various phytotoxicity reports [79, 80, 221]. 
During germination, various processes take place, such 
as the transcription of the gene and its translation, repair 
of DNA, breathing and energy metabolism, respectively 
[59]. The rate of root growth appears to concur with the 
mitotic index and the latter reflects the frequency of cell 
division [230]. Micronuclei formation has been consid-
ered a real mutagenic effect, leading to damage of genetic 
material and malformation of spindle fibers as the result 
of DNA double-strand breaks [231]. Plants exposed to 
Ag, Cu,  TiO2, Zn, ZnO, SeO, MWCNTs, tetra-methyl-
ammonium-hydroxide (TMAH) and bismuth oxide 
 (Bi2O3) NPs create the most apparent anomalies and 
oddities such as micronuclei forming, perturbed chro-
mosomes, fragmentation of chromosomes, stickiness, 
bridge, laggards’ chromosomes and reduction in a mitotic 
index. The difference in concentration, nanoparticle size 
and duration of exposure leads to a difference in sever-
ity in terms of their abnormalities. The concentration of 

NPs used for priming studies determines the cytotoxic 
and genotoxic effects and it varies between plant spe-
cies as well. According to Shang et  al., NPs with diam-
eters varying from 8 to 10 nm can enter the nucleus via 
nuclear pores, indicating a size-dependent interface of 
nanoparticles with cell constituents [232]. The NPs might 
also disrupt cell cycle checkpoints, come into contact 
with antioxidant enzymes, or stimulate ROS generation 
by cellular constituents through mechanical or chemi-
cal bonding to proteins, resulting in protein inhibitory 
and defects in cell division mechanisms. Interruptions or 
reductions in DNA repair function, as well as an increase 
in oxidative stress caused by ROS produced during inter-
play with cell organelles (cell membrane, mitochondria), 
result in antioxidant reduction and changed gene expres-
sion [233]. The toxicity of NPs is caused by three distinct 
mechanisms [234]. Firstly, the toxic materials from NPs 
are released into the contact media. For example, free 
 Ag+ions discharged from AgNPs or other toxic ions pro-
duced from soluble nanoparticles might also lead to DNA 
injury.  Ag+,  Cu+,  Fe2

+,  Cr5
+Ni2

+, and  Mn2
+ as transition 

metal ions are involved in ROS induction and formation 
via Fenton-type reaction and these ions could even bind 
to DNA base pairs as well [235].

Many researchers have reported on mammalian and 
bacterial cytotoxicity, while the role of NPs in contrib-
uting genotoxicity in plants has received little attention. 
AgNPs have been found to cause cytological changes 
in the root tips of germinated wheat and barley seeds 
[129]. Silver nanoparticles seed pretreatment triggered 
chromosomal aberrations, aneuploidy, binucleate cells, 
chromosome deletion, deformed nuclei, micronuclei, 
chromosome fragmentation, and sticky chromosomes 
during the metaphase and anaphase stages of the cell 
cycle. Furthermore, when compared to control, in NPs 
subjected plants’ the mitotic index was significantly 
increased. The increased frequency of mitotic abnor-
malities caused by AgNPs, including chromosome diver-
gence, lagging chromosome, nuclear disintegration, 
chromosome fragmentation, pole distortion in anaphase 
and C-metaphase, is mainly due to its effects on mitotic 
spindles and chromosome orientation changes at differ-
ent stages of the cell cycle. The function of the mitotic 
spindle is impaired as a result of AgNPs interaction with 
a highly reactive tubulin-SH group [236].

When compared to control plants, silver nano-priming 
enhanced seed germination, shoot length, fresh and dry 
biomass, and decreased the respective root parameters 
in wheat and barley. Chromosome aneuploidy, binu-
cleate cells, deletion chromosomes, deformed nuclei, 
micronuclei, chromosome fragmentation, and sticki-
ness chromosomes are all caused by AgNPs priming. 
Thus, AgNPs may be able to pass through inside plants, 
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causing damage to cell division stages and causing chro-
mosomal disruptions [237]. The entry of nano-Ag into 
the cell might have induced DNA harm [238], or it could 
have been caused by the inhibition of DNA synthesis 
during the S-phase [239]. In the three plants exposed to 
AgNPs, structural chromosomal aberrations and nuclei 
deformations were detected. Ag and ZnO NPs disrupted 
cell division stages, interrupted metaphase, caused mul-
tiple chromosomal breaks, and caused cell disintegra-
tion in onion root tips [128, 240]. Nanoparticles have 
the ability to interrelate with and affect the function of 
protein kinases and their families in signal transduction, 
and they are also involved in the regulation of cell cycle 
events such as DNA replication and cell division [241]. 
 TiO2 nanoparticles interrupted one of the mitotic check-
points- PLK1 protein and its function. These proteins 
regulate and control the mitosis process, which includes 
contractile ring formation and cytokinesis.

Priming‑induced molecular responses against abiotic 
stresses
Nano-priming is a technique that uses NPs to boost seed 
germination and growth, and it has been shown to pro-
duce significant results [58]. Seed priming is a technique 
of promoting seed germination and enhancing seed tol-
erance to abiotic and biotic stresses. According to Chen 
and Arora, the abiotic stress caused by seed priming dur-
ing germination could activate stress-reacting systems 
in seeds, improving tolerance through germination and 
seedling development [242]. Drought is a major eco-
logical concern that affects crop productive output and 
nutrient content, ultimately affecting human nourish-
ment. The investigations have shown that MWCNT and 
AgNPs can assist a plant to withstand drought and saline 
stress [215]. The seed priming of Alnus subcordata (Cau-
casian alder) with MWCNTs showed drought resistance 
and exhibited increased germination percentage, SVI, 
enhanced the length of root and shoots [93]. Dimkpa 
et  al. reported the influence of drought on the acquisi-
tion and transfer of nutrients in sorghum but whether 
ZnO NPs could mitigate such effects [243]. Drought 
delayed the emergence of flag leaves and grain heads for 
6–17 days, but the delays for ZnO NPs have been reduced 
to five days. In addition, drought lowered (76%) grain 
yield, but the ZnO NPs application enhanced the yield 
(22–83%) upon drought. ZnO NPs promote plant growth, 
increase the yield, strengthen important food grains 
with Zn nutrients, and improve N acquisition during 
drought stress. Zn-based fertilizers have been shown to 
play a critical role in relieving wheat plant drought stress 
through Zn-mediated increases in photosynthesis pig-
ment, reactive oxygen scavenging substances, and lipid 
peroxidation reduction [244]. Various methodologies for 

Zn fertilization are used, which include foliar spraying 
and soil mixing [244]. This has significant potential for 
developing crop production system resilience, enduring 
human/animal food safety, minimizing nutrient loss, and 
reducing environmental pollution caused by N-fertilizers. 
The drought-induced negative effects were counteracted 
by the Cu, Zn-NPs in wheat seedlings. The enhanced 
antioxidant enzyme activity reduced the MDA level and 
sustained the photosynthetic pigments and enhanced the 
relative water content potential in NP-treated plants [82, 
221]. In maize, priming with Cu NPs showed a favorable 
response to drought stress through improved leaf water 
content and plant biomass. In addition, enhanced antho-
cyanin, chlorophyll, carotenoids, total seed number and 
grain yield were observed in Cu NPs primed plants in 
drought stress treatment [83]. They conclude that Cu NP-
mediated protection against drought stress is a promising 
tool for the generation of improved water deficit tolerant 
crops.

The supplementation of  TiO2 NPs alone or the syner-
gistic application with sodium nitroprusside potentially 
ameliorates the PEG-induced drought stress in wheat 
seedlings. Priming considerably enhanced seed germi-
nation percentage, root and shoot length, SVI, shoot 
and root fresh biomass compared to control, drought-
stressed plants without priming [87]. The seeds of mari-
gold (Calendula officinalis  L.) primed with silicon NPs 
under drought stress exhibit enhanced antioxidant activ-
ity, quercetin, and total flavonoid content compared to 
control plants. Therefore, the priming with nano silicon 
under drought stress might enhance the physiological 
and metabolic traits of Calendula officinalis L. [245]. Sil-
ica or silicon dioxide NPs (SNPs) utilized to rectify heavy 
metal phytotoxicity have been studied previously [246]. 
Aluminum (Al) toxicity has become the main hindrance 
to plant growth in acid soils. The impact of Al solely or 
combined with SNPs on Al accumulation and detoxifi-
cation, plant growth, photosynthetic C assimilation and 
redox homeostasis has been examined [247]. Al accumu-
lation in maize organs reduced their growth, impacted 
photosynthesis and elevated ROS production, through 
induced NADPH oxidase and photorespiration activities, 
and cell damage was more evident in roots than in leaves. 
Co-application of SNPs considerably reduced the action 
of photorespiratory enzymes and NADPH oxidase. Anti-
oxidant defense systems were activated at enzymatic and 
nonenzymatic levels. Furthermore, increased organic 
acid accumulation and metal detoxification in roots were 
generated by SNPs as a shielding mechanism against Al 
toxicity [247]. SNPs enhanced ascorbate (ASC) and glu-
tathione (GSH) content, providing a strong defense for 
plant organs. Si and SNPs could reduce arsenate toxic-
ity in maize plants by enhancing the components of the 
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ASC-GSH cycle [248]. SNP-induced GSH levels have 
previously been proposed as a mechanism to protect 
plants from oxidative stress [223]. Silica NPs appear to 
be a natural choice for the development of pest-control 
agriproducts because silicon has already been used to 
improve plant tolerance to a variety of abiotic and biotic 
stresses [249]. Application of ZnO NPs potentially ame-
liorated the Cd-induced toxicity and increased plant 
growth, photosynthetic rates, and stomatal conductance 
in tomato. It also enhanced the protein content, nitrate 
reductase and carbonic anhydrase activities in ZnO NPs 
treated plants [87].

Biosynthesized AgNPs (as a priming agent; 1  mg/L) 
reduce salt-induced toxic effects in germinating wheat 
grains grown in salt stress (25 and 100  mM NaCl). In 
general, AgNPs priming promotes wheat grain germi-
nation and growth. Furthermore, it influences plant 
hormone balance by increasing IBA, NAA, BAP, and 
decreasing ABA content [250]. Salt stress inhibited seed-
ling growth in Triticum aestivum, as evidenced by a 
marked decline in growth performance index, pigment 
contents and stability index, auxins and cytokinin lev-
els, and a significant enhancement in ABA, particularly 
at 100 mM NaCl. AgNPs priming significantly improved 
all of these parameters, particularly growth parameters 
and photosynthetic efficiency, as well as phytohormone 
balance, implying that AgNPs priming may play a role 
in improving plant tolerance to environmental stresses 
such as salinity [250]. Manganese oxide nanoparticles 
(Mn NPs) or  MnSO4 primed seeds of Capsicum ann-
uum in water (0 mM sodium chloride) resulted in a root 
that was 33 percent longer on average than the absolute 
control [122]. In the control group, root elongation was 
inhibited by 57% when salt stress (100 mM sodium chlo-
ride) was practiced. As a result, priming seeds with man-
ganese sulfate or Mn NPs improved root growth under 
water germination conditions and partly alleviated the 
antagonistic effects detected by salt stress spectroscopy 
[122]. According to Cuajungco et al. [251], protein N–H 
bond strength may have been changed owing to chela-
tion with metal, in this case, MnNPs or MnNPs dissolved 
ions  (Mn2+), which could be the metal "donors."Ye et al. 
also published those priming seeds with MnNPs prior 
to salt stress exposure (100 mM NaCl) altered the N–H 
bond vibration in C. annuum L. [122]. Moreover, uptake 
of Mn was inhibited by salt stress, thus inducing Mn defi-
ciency in plants, thereby affecting cell division and plant 
growth [252]. Also, when Mn was supplemented exter-
nally during a priming process, it effectively accumulated 
Mn inside the seeds. MnSOD expression was altered by 
priming conditions (P ≤ 0.001), salt stress (P ≤ 0.001), 
and changes in mRNA were influenced by the Mn con-
centration and type used during the priming process. The 

positively charged MnNPs spectra might well be con-
nected to SOD up-regulation [122]. Silica NPs of two dif-
ferent types (SiNPs 50 & 100 nm) were used for priming 
in wheat. This led to enhanced seed germination, which 
is higher in SiNPs of 50 nm in size. Moreover, the SiNPs 
primed, and control seedlings were subjected to salt 
stress (100 mM NaCl) and the growth traits such as bio-
mass and chlorophyll contents were found to be higher in 
the SiNPs priming. This indicates that seed germination 
and salinity tolerance in wheat can be improved via prim-
ing with SiNPs [253]. Yeo et al. noted that treatment with 
Si NPs reduced sodium uptake and transpiration bypass 
flow in Oryza sativa [254]. Latef et al. found that priming 
Lupin seeds with ZnO NPs increased the growth of salt-
stressed (150 mM NaCl) plants by increasing the number 
of photosynthetic contents, total phenols, organic sol-
utes, ascorbic acid, and zinc [91]. Moreover, nano-prim-
ing enhanced the SOD, CAT, POD, and APX enzyme 
activities as well as reduced the malondialdehyde (MDA) 
and sodium (Na) levels as compared to salt-stressed 
plants without nano-priming. Thereby, priming the seeds 
with ZnO NPs enhanced the salinity tolerance in Lupinus 
termis plants. Similarly, Sharma et  al. used 20–40  mg/L 
green ZnO NPs to prime-aged seeds of a pre-flowering 
homozygous mutant (BM6) of Pusa basmati (O. sativa) 
that vastly enhanced germination and seedling vigour, 
particularly in comparison to zinc sulphate  (ZnSO4) 
priming and conventional hydropriming [255]. The sor-
ghum seeds soaked with a lower level of  Fe2O3  NPs 
(10 mg/L) potentially induce a rapid and higher germina-
tion rate, whereas the seedling growth was higher at 50 
and 100 mg/L of  Fe2O3 nanoparticles. The higher concen-
tration of  Fe2O3 NPs (500 mg/L) seed priming enhanced 
the plant growth via improved photosystem II efficiency, 
chlorophyll index, photosynthesis, and relative  H2O con-
tent as well as the reduced MDA level. Their results sug-
gest that seed priming with  Fe2O3 NPs could increase the 
germination rate and development of young plants as 
well as give protection against salinity-induced damage 
[256]. The poly (acrylic acid) coated cerium oxide (CeO)
NPs primed and control cotton seeds were germinated 
in salt stress (200  mM NaCl) and the CeO NPs primed 
seeds exhibits enhanced seedling root length, fresh and 
dry mass, improved root vitality under salt stress than 
control (water) seedlings. The roots of CeO NPs primed 
seeds revealed similar Na levels, considerably reduced 
potassium (6%), enhanced calcium (22%) and magne-
sium (60%) compared to control. As compared to control 
(no NP treatment), the poly (acrylic acid) coated CeO 
NPs exhibit differential expression of 4779 root tran-
scripts in salt stress, which primarily includes the genes 
corresponding to ROS pathways and ion homeostasis, 
suggesting that reactive oxygen species and conserved 
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 Ca2+  transduction cascades may possibly play crucial 
roles in salt stress resistance imposed by poly (acrylic 
acid) coated CeO NPs [209].

There are intensive discussions on possible mecha-
nisms concerning the effect of metal nanoparticles on 
photosynthetic apparatus (PSA). For instance, the abil-
ity to improve the absorption of light by chlorophyll 
molecules via the plasma resonance effect is associated 
with the promotion by NPs of light-captured photosyn-
thetic phase photochemical reactions [257]. Metal NPs 
can eliminate PSII chlorophyll from excessive excitation, 
absorb the energy of excited electrons [187] and act as 
a kind of "protector" against oxidative stress. The litera-
ture shows that NPs can reduce the production of ROS 
in plants. For example, in spinach, titanium NPs are able 
to protect chloroplasts from intensive aging owing to oxi-
dative stress, while the ROS level in the leaves decreases 
at the same time [258]. Metal NPs not only affect anti-
oxidant defense system (AOS) enzymes but also encour-
age the accumulation of antioxidant-proline, glutathione 
and carotenoids in plant tissues [259]. It has also been 
reported that nanostructured  SiO2 significantly reduces 
plant transpiration rate and improves plant green colora-
tion and shoot expansion [260].  Fe3O4 NPs (1–4  mg/L) 
stimulate less genotoxicity and induce growth and devel-
opment in rocket seedlings. At lower concentrations, it 
slightly enhanced the chlorophyll fluorescence and sig-
nificantly enhanced the miR159c expression [261]. In 
tobacco,  TiO2 was shown to induce miR159 slightly [262] 
and miR159 is crucial for plant growth and environmen-
tal stress responses.

Impact against biotic stresses
Nanoemulsions are the combination of water and oil 
phase systems like pesticide formulations to control the 
pest population in agronomy [263]. PEG NPs confined 
with garlic energetic oil are used to control red flour 
beetle insects that are widely observed in stored foods. 
The spongy hollow silica NPs called porous hollow silica 
nanoparticles (PHS NPs) loaded with validamycin pes-
ticide is an accomplished in-controlled delivery system 
that benefits agriculture [264]. Most charged nano-silica 
(3–5 nm) can be effectively used in agriculture to control 
ectoparasites of animals and insects. Silicon has already 
been of great interest in combating several biotic and abi-
otic stresses, and hence, silica NPs will be a wonderful 
alternative to produce agri-related products against pests 
[249]. Metal NPs including Ag, Cu, ZnO, and  TiO2 have 
been continuously scrutinized for their antibacterial, 
antifungal and antiviral activities [61, 66, 265, 266]. Alu-
mina nano-insecticides were effective against rice wee-
vil and a lesser grain borer; these pests are transported 

from one area to another in foodstuffs [267]. By using a 
well diffusion assay, nanostructured silver was found to 
have the best antifungal activity against Alternaria alter-
nata, Sclerotinia sclerotiorum, Macrophomina phaseo-
lina, Rhizoctonia solani, Botrytis cinerea, and Curvularia 
lunata [268]. The sun-hemp rosette virus was completely 
suppressed when AgNPs were sprayed onto bean leaves, 
as reported [269]. Elbeshehy et  al. also demonstrated 
that silver NPs sprayed 24 h after infection on Vicia faba 
infected with bean yellow mosaic virus (YMV) produced 
significant results before infection synchronous at the 
time of inoculation [270]. Foliar spray of AgNPs (5 g/mL) 
may have decreased the number of fungal spores, imply-
ing that biosynthesized silver NPs are effective against 
fungal spore formation. The number of lesions decreased 
from 2.9/leaf in pathogen-infected plants to 0.9/leaf in 
silver nanoparticle treated plants, indicating that green 
synthesis of silver nanoparticles might enhance plant 
productivity and reverse the 10–30% damage. Similarly,  
use of phytogenic AgNPs, results in advanced seed ger-
mination, plant development, chlorophyll, carotenoids, 
and protein content, as well as antifungal activity against 
Aspergillus niger in important agricultural crops like 
Oryza sativa, Zea mays, and Arachis hypogaea [270]. The 
green synthesized AgNPs using fungal extracts of Tricho-
derma harzianum and  Aspergillus fumigatus were used 
to treat the seeds of tomato that showed improved 
growth traits (plant height, fresh & dry biomass, yield). In 
addition, AgNPs potentially suppressed the occurrence of 
bacterial canker disease [271]. Chitosan NPs have antimi-
crobial properties, such as the ability to control Fusarium 
crown, root rot in Solanum lycopersicum, Botrytis bunch 
rot in Vitis vinifera, and Phyricularia grisea in O. sativa, 
[272] but they are less effective against bacteria. Malerba 
and Cerana [273] studied chitosan’s antimicrobial effects, 
agglutination reactions, cell membrane disruption, sup-
pression of  H+-ATPase activity, inactivation of toxin pro-
duction and microbial growth, suppression of mRNA and 
protein synthesis, and nutrient flow. Improved SVI and 
enhanced defense responses were seen in the tomato and 
maize seeds primed with Cu-chitosan NPs [274]. In addi-
tion, Cu-chitosan NPs treated maize seeds stimulate the 
amylase and protease enzymes [275]. The seeds primed 
with nano chitosan exhibit activity against seed-borne 
pathogens [275]. The improved restricted blast disease 
occurrence was noticed in finger millet plants treated 
synergistically with Cu-chitosan NPs, compared to foliar 
spray alone [276]. Furthermore, the synergistic and foliar 
spray of Cu-chitosan NPs in finger millet stimulates vari-
ous defense-related enzymes like chitinase, chitosanase, 
β-1,3 glucanase, peroxidase, polyphenol oxidase, and 
protease and exhibits improved resistance to the blast 
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fungus Pyricularia grisea [276]. Henceforth, the pre-
treatment of nano-pesticides could promote growth and 
reduce the incidence of disease occurrence in plants.

Distribution of minerals
Metal and metal oxide NPs are stated to alter the min-
eral nutrition profile of many important crops. Ag NPs 
on foliar feeding decreased mineral elements in different 
parts of S. lycopersicum seedlings that exhibited nutri-
ent deficiency symptoms [277]. In another article, it was 
quoted that, the potassium was increased whereas mag-
nesium, phosphorus, and sulphur were decreased on 
metal NPs application [278]. In transgenic Gossypium 
hirsutum, cerium dioxide and silicon dioxide nanopar-
ticles completely altered the mineral content in shoots 
and roots [279, 280]. Similarly, there was no modifica-
tion in the mineral profile of  CeO2 NPs in many parts 
of radish, but decreased Ni was observed with enhanc-
ing nanoparticles in the soil. The level of Ca, Fe, and 
Zn were decreased after CuO NPs exposure in beans, 
while sodium (Na) concentration was increased. Fur-
thermore, in lettuce, nanostructured CuO reduced the 
contents of Ca, Mn, P, and Mg. CuO nanoparticles (5, 
10, and 20 mg/L) improved copper, phosphorus, and sul-
fur concentrations in alfalfa shoots by 100%, 50%, and 
20%, respectively, while P and iron concentrations were 
reduced in lettuce shoots [104]. The concentrations of K, 
Ca, Mg and S were reduced after  SnO2 NPs exposure in 
the leaves and stems of tomato [278]. The soluble met-
als released from NPs might be a possible reason for the 
modified or reduced mineral uptake in many plants [52]. 
NPs can be used to enhance mineral nutrients, particu-
larly micronutrient (Zn, Fe, Mn, B etc.) concentrations, 
in plants, which may positively influence plant growth 
under certain conditions [281, 282]. For example, foliar 
spray of  SiO2 NPs increased the translocation of potas-
sium (K), magnesium (Mg), and Fe from the uppermost 
nodes to rachises of rice, whereas  SiO2 NPs had no sig-
nificant effects on the translocation of calcium (Ca), zinc 
(Zn), and manganese (Mn) [283]. Antioxidant defense 
system and leaf senescence were also delayed by MWC-
NTs treated plants. In an appealing way, the nutritional 
profile analyzed through inductively coupled plasma-
optical emission spectrometry in the leaves and kernels 
of MWCNTs-treated plants were found to be higher 
than control plants, indicating that MWCNTs could alter 
nutrient distributions [47].

Generally, in plants, mineral uptake and accumulation 
are reduced during metal and metal oxide nanoparticles 
exposure. Adsorption, absorption, and transport from the 
root surface to the xylem, as well as translocation from 
the roots to the shoots or grains, are the mechanisms by 

which NPs reduce mineral uptake. Salinity is one of the 
factors that inhibit Mn uptake and initiate Mn deficiency 
in plants, which was controlled in this study by additional 
Mn supplementation from Mn nanoparticles and  MnSO4 
[122]. Moreover, Mn exists as a major component in the 
protein complex, essential for performing water oxida-
tion during photosynthesis. Although this is a one-way 
transportation process, Na is stored in a huge quantity 
in shoots rather than roots. Therefore, during salt stress, 
MnNPs primed seeds (0.1 and 1 mg/L) exhibited a posi-
tive Na redistribution, whereas  Mn2+ primed seeds did 
not show any effective changes. During salt stress, a 
steady increase in the calcium content was observed in 
shoot and root at all priming conditions (hydro,  MnSO4, 
MnO NP). Since calcium is necessary for leaf tissue 
development, its accumulation was usually observed in 
the shoot [122]. Ca, as previously discussed, is not only 
important for plant cell wall and membrane function, 
but it also functions as a secondary messenger in signal 
transduction in plant cells. Therefore,  Ca2+ is extremely 
essential for cellular communication, especially when the 
shoot is completely accumulated with  Ca2+ ions.

Drought reduced grain nitrogen translocation by 57% 
and total nitrogen acquisition in the root, shoot, and 
22% of grain. Furthermore, according to reports, ZnO 
nanoparticles (5  mg/kg) enriched (84%) grain nitro-
gen translocation compared to the drought control 
and restored total nitrogen levels to pre-drought levels 
[243]. Drought conditions increased phosphorus uptake 
in the shoot (39%) while restricting grain phosphorus 
translocation (63%). ZnO-NPs adjustment (5  mg/kg) 
to drought-affected plants developed total potassium 
attainment (16–30%) and grain potassium (123%), rela-
tive to the drought control. Drought lowered (32%) aver-
age grain zinc concentration; though, zinc oxide NPs 
amendments improved (94%) grain zinc under drought 
[243]. Similarly, the iron was improved considerably in 
the shoots and roots of primed young plants after nZVI 
priming. Results suggested that a low concentration of 
nZVI (< 40 mg/L) acted as an effective priming agent for 
the seeds with improved plant growth at its later stage 
[28]. These results suggest that the minerals distributed 
showed a consequent impact on NP treatments and that 
it varied according to the type of NPs and treatment.

Conclusion and future perspective
The increasing consumption of nanomaterials demands 
larger production. Several nanomaterials, including 
metal and metal oxide NPs, were used in nano-priming 
to improve seed germination and develop resistance to 
various stresses. Like other priming techniques, nano-
priming induces synchronized germination, stimulates 
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plant growth and augments tolerance to abiotic 
stresses. Numerous reports have shown that the induc-
tion of ROS by NPs is the basis to produce secondary 
metabolites. ROS acts as signaling cues in plant defense 
mechanisms against biotic and abiotic stresses that lead 
to the induction of stress-specific secondary metabo-
lites. However, comprehensive knowledge on NP adhe-
sion and phytohormone crosstalk in nano-priming 
induced seed germination and the signaling cascades 
that participate in secondary metabolite production 
during nano-priming are still far behind. Thus, it man-
dates a complete genome-wide transcriptome study 
in different nano-priming conditions will be useful 
in understanding the commonly controlled networks 
responding to NPs. Moreover, during nano-priming 
treatments, the utilization of various aquaporin family 
gene mutants is probably useful to dissect additional 
transcription co-factors correlated with the expres-
sion of aquaporin genes in primed seeds. Furthermore, 
it is noteworthy to identify the intercellular trafficking 
of phosphorylation-dependent PIP and TIP aquaporin 
induced by NPs in nano-priming that leads to enhanced 
water uptake.
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