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Abstract
Background  The past few years have witnessed a significant increase in research related to plant-derived 
extracellular vesicles (PDEVs) in biological and medical applications. Using biochemical technologies, multiple 
independent groups have demonstrated the important roles of PDEVs as potential mediators involved in cell-cell 
communication and the exchange of bio-information between species. Recently, several contents have been well 
identified in PDEVs, including nucleic acids, proteins, lipids, and other active substances. These cargoes carried by 
PDEVs could be transferred into recipient cells and remarkably influence their biological behaviors associated with 
human diseases, such as cancers and inflammatory diseases.

Main body of the abstract  This review summarizes the latest updates regarding PDEVs and focuses on its important 
role in nanomedicine applications, as well as the potential of PDEVs as drug delivery strategies to develop diagnostic 
and therapeutic agents for the clinical management of diseases, especially like cancers.

Conclusion  Considering its unique advantages, especially high stability, intrinsic bioactivity and easy absorption, 
further elaboration on molecular mechanisms and biological factors driving the function of PDEVs will provide new 
horizons for the treatment of human disease.
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Background
Although the beneficial properties of natural substances 
against human diseases have been recognized for sev-
eral decades, clarification of the biological functions and 

underlying molecular mechanisms remains limited. In 
recent years, the use of extracellular vesicles (EVs) from 
natural compounds has gained huge scientific interest as 
a promising therapeutic strategy [1]. These nanometer-
sized membrane-enclosed EVs have been extracted from 
many plant species [2], such as Dendropanax morbifera 
[3], grapefruit [4], and dried plant-derived materials [5]. 
These EVs are effectively uptaken by most host organs, 
affecting their physiological and pathological processes 
[4]. Nowadays, several studies have pointed out the 
important roles of plant-derived extracellular vesicles 
(PDEVs) in cell-cell communication, the exchange of 
bio-information between different cells, and maintaining 
proper tissue homeostasis and organism integrity [6, 7]. 
The biochemical and pharmacological studies have dem-
onstrated the heterogeneity of PDEVs in terms of their 
origin, size, and content [8]. Generally, according to the 
size, the PDEVs are mainly divided into two categories: 
large microvesicles (100 to 1,000 nm) and small nanovesi-
cles (50 to 100 nm) [9, 10].

In the 1960s, the identification of PDEVs was first 
attributed to Jensen’s group, who found that the mul-
tivesicular bodies were released from cotton cells [11] 
and carrot cells [12]. They observed that the multive-
sicular bodies could be released into extracellular space 
by the membrane fusion reaction. It was not until 2009 
that Regente et al. [13] isolated the EVs from sunflower 
apoplastic fluids and demonstrated the presence of some 
proteins in these PDEVs. More importantly, in 2017, the 
evidence from the study by Rutter and Innes [14] indi-
cated the promising biological activity of leaf apoplast-
derived EVs in the cellular defense system. Subsequently, 
clarifying the biological roles and clinical applications of 
PDEVs has rapidly become an attractive research field 
[15]. Recent advances in PDEVs have demonstrated their 
several bioactivities, such as anti-cancer, anti-inflamma-
tory, and anti-oxidative stress properties, in vitro and 
in vivo [16]. Despite this, more studies need to be per-
formed to explore the underlying molecular mechanisms 
behind recipient cellular targets regulated by PDEVs. In 
addition, our current knowledge is not sufficient to dis-
tinguish the different biological activities and therapeutic 
efficacy of PDEVs from different kinds of plants.

Although the sources of PDEVs are distinct, they might 
have promising aspects against pathological conditions 
(Table  1). In this review, we mainly summarize the up-
to-date pre-clinical and clinical studies to discuss the 
potential of PDEVs in clinical applications and therapeu-
tic implications. This comprehensive review proposes to 
focus on the characterization and biomedicinal applica-
tions of PDEVs to improve human health.

Table 1  Summary of PDEVs in multiple pathological conditions
Plant species Molecular 

mechanism
Biological 
function

Diseases Refs

Kaempferia 
parviflora

Suppres-
sion of cell 
viability

Gastric 
cancer

(60)

Tea flowers/leaves Stimulating ROS 
generation

Anti-prolif-
eration, anti-
migration

Breast 
cancer

(61, 
62)

Lemon Improving ROS 
concentration

Induc-
tion of cell 
apoptosis

Gastric 
cancer

(64)

Bitter melon Sensitizing 
effect of 
5-fluorouracil

Oral squa-
mous cell 
carcinoma

(68, 
69)

Petasites japonicus Activating 
MAPK and 
NF-κB signaling

Promoting 
maturation 
of dendritic 
cells, activat-
ing Th1/
cytotoxic T 
cells

SARS-
CoV-2 
infection

(81)

Pueraria lobata Facilitating M2 
macrophage 
polarization

Anti-inflam-
matory

Inflamma-
tory-related 
diseases

(82)

Oat Decreasing se-
cretion of pro-
inflammatory 
cytokines

Prevention of 
ethanol-in-
duced brain 
damage

Brain 
damage

(84)

Lemon Inhibiting ERK/
NF-κB signalling

Anti-in-
flammatory 
effects

Inflam-
matory 
damage

(85)

Carrot Up-regulating 
antioxidative 
molecules

Alleviating 
oxidative 
stress

Myocardial 
infarction

(90)

Aloe saponaria Promoting 
tube forma-
tion and 
angiogenesis

Skin 
wound

(96)

Ginseng Delivery of 
plant microR-
NAs into BMSCs

Facilitat-
ing BMSC 
neural dif-
ferentiation 
and neural 
restoration

Skin 
wound

(97)

Ginseng Altering polar-
ization of M2 
macrophages

Improving 
anti-tumor 
immune 
response

Melanoma (100)

Dendropanax 
morbifera

Impairing 
tyrosinase-relat-
ed signaling

Reducing 
melanin 
concentra-
tion and 
increased 
whitening 
effect

Melanoma (101)
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Comparing PDEVs to mammalian EVs
For a long time, the EVs from animals, mainly mammals, 
have been gradually used in genetic, biochemical, and 
pharmacological fields [17–20]. In 1987, the first report 
of mammalian EVs was that exosomes were derived 
from the maturing reticulocyte [21]. After then, a large 
number of EVs have been constitutively identified from 
almost all of the mammalian cells, such as cancer cells 
[22, 23], immune cells [24] stem cells [25], etc. In addi-
tion, mammalian EVs have also been discovered in the 
biological fluids, such as urine, blood and saliva [26, 27]. 
Mammalian EVs contain diverse cargo molecules (pro-
teins/nucleic acids/lipids) and could be involved in the 
intercellular communication [28]. Because of their sat-
isfactory pharmacological activity and biocompatibility, 
mammalian EVs are widely regarded as the regulatory 
agents in multiple physiological and pathological pro-
cesses. In myocardial infarction mice model, injection of 
dendritic cell-derived exosomes could promote the infil-
tration of Treg cells and M2 macrophages into border 
zoom, consequently improving the cardiac function [29]. 
The exosomes derived from gefitinib sensitive cancer 
cells could effectively reverses the gefitinib resistance by 
transferring microRNA-7 in non-small-cell lung cancer 
[30]. Besides, Cui’s group further confirmed that mam-
malian exosomes could transport the bioactive molecules 
across the cellular interface, such as blood-brain barrier 
(BBB), and targeting glioma cells [31]. Although the bio-
logical application of mammalian EVs is promising, there 
are several major issues that pose the obstacles for their 
clinical translation, for example low yield, difficulties to 
obtain high-quality EVs, and time-consuming isolation 
[10]. In particular, the utilization of animals as a source of 
vesicles frequently activates the host immune responses, 
likely causing side-effects [23, 32]. However, identify-
ing PDEVs and clarifying their functional mechanisms 

could represent an alternative strategy to overcome these 
challenges.

Recently, several research groups have speculated the 
existence of nanovesicles in plant materials, participat-
ing in cell-to-cell communication and interspecies com-
munication [33]. The cargoes carried by PDEVs could 
be transferred into the receiving cells, causing changes 
in the (patho)physiological functions [34] (Fig.  1). Even 
though the secretion mechanisms of EVs from plant 
or animal cells are similar to some extent, such as exo-
cytosis-mediated release [35], a few different biological 
characteristics can be identified among these EVs from 
different species. PDEVs can be obtained in large quanti-
ties due to the low cost of various plant resources. The 
plant-derived nanovesicles can be produced continuously 
from all kinds of fruits and vegetables purchased from 
conveniently located local markets [15]. Moreover, the 
plant cells in in vitro culture media could even be used to 
produce sufficient PDEVs [36]. Under controlled artificial 
conditions, the application of food additives successfully 
increased PDEV production [36]. They have no signifi-
cant toxicity as they are mainly extracted from naturally 
medicinal or edible plant materials. Additionally, PDEVs 
are suitable for human health management without acti-
vating the host immune responses [37]. Besides, through 
several proposed mechanisms, including endocytosis, 
phagocytosis, macropinocytosis, and membrane fusion 
[38], PDEVs could easily pass across different biological 
barriers, such as the BBB, and are subsequently absorbed 
by the recipient cells [39]. Considering these benefits 
(Table 2), we need to dedicate more in-depth investiga-
tion to better clarify the basic characteristics of PDEVs as 
diagnostic and therapeutic agents, which will help open 
new avenues for the regulation of human health.

Fig. 1  Application of plant-derived extracellular vesicles (PDEVs) as functional nanomedicine materials for human diseases
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Main pharmacological activities of PDEVs
PDEVs can transfer several cargoes to recipient cells and 
change the cellular phenotype, including nucleic acids, 
proteins, lipids, and other specific pharmacologically 
active substances [40] (Fig. 2). Several lipophilic second-
ary metabolites, such as alkaloids and curcuminoids, can 
be packaged into PDEVs and facilitate them to pass the 
membrane barrier [36]. Surprisingly, an ongoing work by 
Berger et al. [41] did not verify the secondary metabolites 
(vitamin C and naringenin) in the orange nanovesicles. 
These inconsistent findings may be due to the distinct 
scopes of nanovesicle-associated secondary metabolites 
in different plant species-derived EVs. Using label-free 
quantitative shotgun proteomics, Pocsfalvi et al. [9] found 
approximately 600–800 proteins in the citrus fruit juice 
sac cell-derived vesicles. Bioinformatic analysis revealed 

the important regulatory roles of these protein biocargo 
in multiple physiological processes, including vesicular 
trafficking, cellular metabolism, and cell growth. Sub-
sequent studies supported the view that plant-derived 
microRNAs could be encapsulated in PDEVs, affecting 
the localization and stability of microRNAs [42–44]. The 
microRNAs transferred using PDEVs interfered with the 
pathophysiological processes of recipient cells by regulat-
ing their target genes [1]. Interestingly, these bioavailable 
cargoes encapsulated on PDEVs make them unique and 
powerful tools for health-beneficial purposes. In fact, 
without the need to reload other drugs, the PDEVs dis-
play natural clinical and pharmaceutical benefits [45]. For 
pharmaceutical application, the production of medicinal 
PDEVs did not exhibit any immunogenic or toxic effects 
on the host cells [46].

Besides the inherent biological activities, PDEVs can 
act as excellent nanovectors for the intercellular deliv-
ery of poorly soluble agents or therapeutic compounds 
as they may interfere with or potentialize their phar-
macological activity. In addition, PDEVs are a potential 
source of desirable morphologies, feasible for large-scale 
production, inexpensive, and made of environmen-
tally-friendly materials [47]. Man et al. (2021) extracted 
ginger-derived EVs (GDEVs) using ultrahigh-speed 
centrifugation. They found that the loading capacity of 
GDEVs strongly improved the lipid solubility of gingerol 
compounds, facilitating the intestinal absorption and 
transportation of gingerols [48]. Folic acid (FA)-positive 
ginger-derived EVs were used for the targeted delivery 

Table 2  The preliminary research about the benefits of plant-
derived EVs
Items Characteristics Refs
Source Almost all kinds of edible fruits and 

vegetables
(15)

Yield Large production, and can be increased 
by food additives

(36)

Side-effects No significant side-effects (37)

Barrier crossing 
ability

Crossing the different biological barriers (39)

Targeting Carrying cargoes, and easily absorbed by 
the targeted recipient cells

(40)

Stability Good stability in microenvironment (60)

Cost Low costs and easy of purchase (103)

Fig. 2  Schematic representations of PDEV structure and cargoes. PDEVs could transfer several cargoes to recipient cells, including small RNAs, proteins, 
lipids, and other pharmacologically active metabolites
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of survivin siRNA to human oral epidermoid carcinoma 
KB cells, leading to the downregulation of survivin and 
suppression of cell growth in vitro and in vivo [49]. The 
doxorubicin-containing PDEVs efficiently strengthened 
the cytotoxic effects of doxorubicin on the colon cancer 
cells, SW480. Meanwhile, other therapeutic agents, such 
as antisense oligonucleotides, were also encapsulated 
into PDEVs and successfully transported into human 
cells [50]. Collectively, these findings prove the value and 
potential of PDEVs as nanoscale vehicles for the delivery 
of therapeutic cargoes and offer a meaningful indication 
for the further use of PDEVs as a drug delivery system 
[51]. However, more investigations are still needed to 
exactly determine the potential of these nanoscale drug 
carriers to the next level for the benefit of patients in the 
future.

Several studies focus on modification techniques to 
improve the drug delivery efficiency of PDEVs (Fig.  3). 
The pharmacological particles are directedly encapsu-
lated into the PDEVs by internalization processes, such 
as phagocytosis or endocytosis, to be selectively taken 
up by the recipient cells [52]. Once inside the PDEVs, 
the therapeutic drugs are significantly transported to 
the inflammatory tumor sites, leading to the inhibition 
of tumor growth [53]. Tian et al. [54] developed another 

surface modification strategy, named the bio-orthogonal 
copper-free azide alkyne cyclo-addition. Using this het-
erobifunctional click chemistry, the functional ligands 
were effectively loaded onto the surfaces of EVs. For 
example, the cyclo(CRGDKGPDC), an integrin-specific 
iRGD peptide, promoted the conjugation efficiency of 
integrin αvβ3 on the EV membrane [55]. Recently, Sato 
et al. [56] fabricated an engineered hybrid EV by mem-
brane fusion with various liposomes. Functional studies 
have demonstrated that the liposome-mediated mem-
brane-fusion approach facilitates the design of advanced 
engineered EVs to deliver exogenous hydrophobic com-
pounds across the tissue barriers [57]. Lastly, a review 
published in 2022 [58] indicated that the metal-organic 
frameworks (MOF), a synthetic porous functional mate-
rial with excellent biocompatibility, could be regarded 
as a promising alternative for disease management. The 
bioactive compound-loaded MOF encapsulated into EVs 
prompted the delivery of cargoes into the targeted recipi-
ent cells [35, 59]. Thus, these modification methods pro-
vide novel opportunities for the significant advancement 
of PDEVs as appropriate nanodelivery systems.

Fig. 3  Modification techniques to facilitate PDEVs as the potential therapeutic nanocarriers. (A) Pharmacological particles directly encapsulated into the 
PDEVs. (B) Functional ligands effectively loaded onto the surfaces of EVs using a surface modification strategy. (C) Liposome-mediated membrane-fusion 
approach facilitating the design of advanced engineered PDEVs. (D) Bioactive agent-loaded MOF encapsulated into PDEVs, consequently prompting the 
targeted delivery of cargoes into recipient cells
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Properties of PDEVs for cancer research and treatment
Over the last few decades, studies exploring novel strat-
egies for improving therapeutic efficacy have been a 
dominant topic in clinical cancer research. Nowadays, 
EVs derived from plants have been demonstrated to par-
ticipate in regulating different biological functions and 
broadening cancer treatment strategies with several ben-
efits [47].

The EVs isolated from Kaempferia parviflora (KPEVs) 
had the attractive ability to antagonize tumorigenesis. 
The engineered KPEVs were stably absorbed into the 
gastric adenocarcinoma (AGS) cells, leading to the sup-
pression of cell viability in a dose-dependent manner 
[60]. Other interesting findings were the identification of 
exosome-like nanotherapeutics from tea flowers [61] and 
tea leaves [62]. The cellular experiments indicated strong 
cytotoxicity effects of these exosome-like nanothera-
peutics against breast cancer cells in vivo and in vitro. 
Administration of exosome-like nanotherapeutics signifi-
cantly stimulated the mitochondrial damage and reactive 
oxygen species (ROS) amplification, consequently trig-
gering the apoptotic effect in 4T1 cells. Similarly, Yang 
and colleagues confirmed the functional roles of lemon 
juice-derived EVs (LDEVs) on ROS generation in cancer 
cells [63]. Using an innovative method, the electropho-
retic technique combined with a 300  kDa cut-off dialy-
sis bag, Yang’s group successfully isolated the LDEVs, 
and found that LDEVs were effectively internalized into 
the gastric cancer cells (AGS, BGC-823, and SGC-7901), 
causing improved ROS concentration and induction of 
cell apoptosis. In addition, the paper on “kinase-targeted 
cancer therapies” reviewed various protein kinases driv-
ing cancer progression, such as protein kinase AKT and 
extracellular-signal-regulated kinase (ERK) [64]. To fur-
ther confirm these points, Stanly et al. [65] evaluated 
the effects of grapefruit-derived EVs (GFDEVs) on the 
AKT-ERK signaling pathway. They found that the admin-
istration of GFDEVs remarkably downregulated the acti-
vation of the AKT-ERK axis in different cancer cell lines, 
consequently causing cell cycle arrest and cell apoptosis. 
Overall, the data presented here strongly support the bio-
medical toxicity of PDEVs on cancer cells.

In addition, PDEVs are highlighted as novel agents 
that can be used to overcome the defection of conven-
tional anti-cancer therapy. The potential utilization of 
these bioactive PDEVs in combination with conventional 
methods can open a new gateway for the treatment of 
cancer patients. Some conventional anti-cancer meth-
ods, such as radiotherapy, frequently cause excessive 
ROS generation, resulting in oxidative stress and side-
effects in cancer patients [66]. Administration of the 
bitter melon-derived EVs (BMDEVs) scavenged the ele-
vated mitochondrial ROS and maintained mitochondrial 
homeostasis, dominantly preventing radiation-induced 

cardiomyocyte injury and myocardial fibrosis [67]. More-
over, these BMDEVs exerted synergistic anti-cancer 
effects of 5-fluorouracil against oral squamous cell carci-
noma [68, 69]. In vitro and in vivo analyses further dem-
onstrated the sensitizing effect of BMDEVs on human 
cancer therapy [70]. The above findings demonstrate the 
clinical potential of PDEV-based strategies to enhance 
therapeutic efficacy.

Although a detailed understanding of PDEVs is not 
present, their applications in cancer research and treat-
ment have attracted a great deal of attention. Notably, 
the PDEVs display good safety and biocompatibility for 
future clinical applications [71, 72]. Several groups con-
sistently revealed that PDEVs displayed remarkable kill-
ing effects on cancer cells without significantly affecting 
normal cell growth [73, 74]. This view was further con-
firmed by Özkan and colleagues [75], who proved that 
the dermal fibroblast cells from a healthy person could 
remain unaffected upon treatment with garlic-derived 
EVs. Subsequently, the experimental animal models 
showed no significant weight loss in the mice after oral 
treatment with PDEVs [49]. In summary, these unique 
characteristics make PDEV-based strategies a profound 
candidate against cancer pathogenesis.

Biomedical applications of PDEVs in anti-inflammatory 
response
Generally, the inflammatory response has been regarded 
as a phenomenon induced by imbalanced immune signal-
ing. The improper control of this immune dysregulation 
can cause persistent inflammation, which may contribute 
to chronic or acute inflammatory diseases, threatening 
human health [76, 77]. To date, a series of experimen-
tal evidence has shown the great potential of PDEVs in 
the regulation of immune function and inflammatory 
responses in in vitro and in vivo models [78, 79]. The 
bioactive materials loaded on PDEVs, such as microR-
NAs, could be transferred into recipient cells and inhibit 
the SARS-CoV-2-induced inflammatory responses in 
the lung [80]. The EVs isolated from Petasites japoni-
cus (PJ-EVs) showed increased activation of MAPK and 
NF-κB signaling, considerably inducing the maturation 
of murine dendritic cells and strengthening their anti-
gen-presenting ability. Furthermore, treatment with PJ-
EVs boosted the activation of Th1 T cells and cytotoxic 
T cells in inflammatory responses [81]. Another recent 
finding showed that nanovesicles derived from Pueraria 
lobata, an edible and medicinal herb, were well-taken 
up by mouse macrophages and facilitated M2 macro-
phage polarization. Through shifting M1 macrophages 
toward M2-like phenotypes, Pueraria lobata-derived 
EVs function as an attractive anti-inflammatory thera-
peutic biomaterial [82]. In addition, the roles of PDEVs 
in alleviating inflammatory-related diseases were directly 
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demonstrated through the mulberry bark-derived EVs-
mediated protection effect on intestinal epithelial cells in 
a mouse colitis model [83].

It is conceivable that the interaction between PDEVs 
and targeted cells can generate beneficial effects by medi-
ating the secretion of multiple inflammatory factors. In 
an alcohol-induced chronic brain inflammation model, 
oat nanovesicles crossed the BBB and were preferen-
tially taken up by the microglial cells. Oral administra-
tion of these oat nanovesicles decreased the secretion 
of pro-inflammatory cytokines, such as IL-6, IL-1β, and 
TNFα, from microglial cells and contributed to the pre-
vention of ethanol-induced brain damage [84]. Similarly, 
the downregulated pro-inflammatory transcripts of IL-6, 
IL-1β, and COX-2 induced by pre-treatment with cab-
bage nanovesicles exhibited promising anti-inflammatory 
activities in human keratinocytes and fibroblasts [50]. In 
addition, PDEVs can be used to avoid inflammatory dam-
age by promoting the upregulation of anti-inflammatory 
molecules, such as IL-9 and IL-10 [85]. The EVs from sev-
eral fruits and vegetables, including grapes, grapefruit, 
ginger, and carrot, increased Wnt activation-mediated 
IL-10 secretion, providing beneficial effects for maintain-
ing host cell homeostasis [45].

Oxidation-mediated inflammation has recently become 
an emerging research topic. Aging and other diseases 
are fundamentally caused by the imbalance between oxi-
dation and anti-oxidation, which results in inflamma-
tory injury and disease risks [86]. Using specific ELISA 
colorimetric assays, Logozzi’s group [87] identified 
high antioxidative content inside the PDEVs from fruit 
mixes, indicating their high level of antioxidant capac-
ity. The strawberry-derived EVs were internalized by 
human mesenchymal stromal cells and prevented oxi-
dative stress induced by hydrogen peroxide (H2O2) in a 
dose-dependent manner [88]. Similarly, the EVs from 
pomegranate juice showed an obvious effect to alleviate 
H2O2-induced oxidative damage [89]. The anti-inflamma-
tory ability and health-promoting activity against oxida-
tive stress of PDEVs have been proven to be mediated by 
up-regulating the expression of antioxidative molecules 
in the recipient cells, including nuclear factor erythroid 
2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), 
and NAD(P)H quinone dehydrogenase 1 (NQO1) [90]. 
Through inhibiting the reduction of antioxidative mol-
ecules, PDEVs function as the prospective scavengers of 
free radicals, impairing their harmful cellular effects [91]. 
Taken together, this information may provide the basis 
for using PDEVs as biological antioxidant agents. In addi-
tion, it would be interesting to explore the underlying 
anti-oxidation mechanisms for more broad therapeutic 
applications in inflammatory diseases.

Current findings and importance of PDEVs for skin-based 
therapy
Due to their highlighted therapeutic properties, the roles 
of PDEVs in dermatological conditions are of intense 
interest and raise some concern. Accumulating evidence 
has described the applications of PDEVs in the treatment 
of dermal diseases, such as cutaneous lesions, skin regen-
eration, and skin cancer [92, 93]. Thus, it is important to 
consider PDEVs as novel biotechnological skin protec-
tants for maintaining normal skin function.

Every year, millions of individuals suffer from mutilat-
ing scarring and serious wounds that take much time 
to cure and impose a high infection risk. PDEV-based 
signaling has been recently proven to participate in the 
wound healing progress [94], supporting their attrac-
tive properties to facilitate wound-closure induction and 
acceleration. Savci et al. [95] demonstrated PDEVs as the 
prospective cell-free biomaterials for wound healing. In 
human epidermal keratinocyte HaCaT cells, the admin-
istration of GFDEVs remarkably promoted cell viability 
and reduced cellular ROS generation in a dose-depen-
dent manner [95]. Moreover, the tube formation capabili-
ties of human umbilical vein endothelial cells (HUVEC) 
were significantly increased after treatment with Aloe 
saponaria-derived EVs (AS-EVs) [96], suggesting the 
effective pro-angiogenesis activity of AS-EVs within the 
wound healing. After the injury, the ginseng-derived EVs 
(G-EVs) functioned as nanoplatforms for effective deliv-
ery of plant microRNAs into bone marrow-derived mes-
enchymal stem cells (BMSCs), consequently facilitating 
the BMSC neural differentiation and neural restoration 
surrounding the wound sites. G-EVs were also shown to 
stimulate neovascularization by increasing angiogenic 
factors, such as vascular endothelial growth factor [97]. 
All these biological progresses are significant for tissue 
regeneration and wound healing.

In addition, because of a few side-effects and high 
skin penetration, the natural sources could function as 
an alternative to chemotherapeutic agents [98, 99]. The 
spectrophotometric and biochemical approaches indi-
cated that G-EVs could act as the immunopotentiator 
for altering the polarization of M2 macrophages, finally 
improving the anti-tumor immune response in mela-
noma-bearing mice [100]. The EVs extracted from Den-
dropanax morbifera were uptaken by B16BL6 melanoma 
cells, resulting in reduced cellular melanin concentration 
and increased whitening effect by impairing tyrosinase-
related signaling. Notably, treatment with Dendropanax 
morbifer-derived EVs induced nonsignificant cytotoxicity 
to healthy human skin tissues [101].

For better bio-therapeutic purposes, PDEVs can be 
engineered to contain specific pharmaceutical com-
pounds or used for targeted transport by labeling with 
certain surface biomarkers [102, 103]. For example, in 
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2020, Yepes-Molina et al. [104] explored the biological 
potential of broccoli-derived EVs (BDEVs) as agent deliv-
ery nanoplatforms. The membrane vesicle-encapsulated 
fluorescent products were notably detected in keratino-
cyte skin cells, suggesting BDEVs as nanosized technol-
ogy for the transdermal delivery of drugs. Furthermore, 
to enhance skin permeation of plasmid DNA (pDNA) 
into melanoma tissues, Niu’s group established the cell-
penetrating peptide and cationic poly(ethyleneimine) 
conjugated pDNA-loaded PDEVs. They found that these 
functional peptide-conjugated PDEVs were highly effi-
cient in facilitating transdermal pDNA delivery into skin 
melanomas [105].

PDEV-based therapy in clinical trials
In the last couple of decades, many studies have extended 
the understanding of the scientific community about 
the functional advantages of PDEVs, highlighting pos-
sible novel insights in biomedicine for the treatment of 
human diseases. In this regard, several clinical studies 
on the beneficial activities of PDEVs for clinical manage-
ment have been currently registered in the ClinicalTrials.
gov database [106] (Table 3). In particular, the properties 
of EVs isolated from many kinds of fruits and their abil-
ity as a delivery vehicle to increase the bioavailability of 
oral curcumin are being tested on human colon cancer 
patients (NCT01294072) [107]. In a subsequent study, 
Zhang et al. [108] aimed to evaluate the great prospects 
of GDEVs as natural anti-inflammatory agents for irri-
table bowel disease (NCT04879810). This trial concluded 
that GDEVs were likely reliable therapeutic nanoparticles 
for effectively preventing inflammatory bowel disease. 
Another completed trial confirmed the anti-inflam-
matory activity of grape-derived EVs (NCT01668849) 
[107]. Additionally, they proved the important roles 

of grape-derived EVs in preventing some side-effects 
induced by chemoradiation treatment in head and neck 
cancer patients, such as oral mucositis pain. Finally, an 
exploratory trial was designed to evaluate the effective-
ness of EVs isolated from ginger or aloe plants in the 
treatment of patients with polycystic ovarian syndrome 
(NCT03493984); however, this meaningful study has 
not been approved so far. Therefore, considering the 
above-mentioned promising advantages [109, 110], the 
researchers should conduct more preclinical and clinical 
trials to determine the bioactivities of PDEVs in humans 
and define their minimum dosage in further studies.

Critical thinking and future outlooks
It is well established that PDEVs could act as important 
information conveyers between donor and recipient 
cells by transporting various bioactive cargoes, includ-
ing proteins, nucleic acids, and other therapeutic agents. 
Although multiple omics techniques exploring their 
contents are increasing, the lack of specific biomarkers 
still results in the poor characterization of PDEVs and 
remains a major challenge [111]. The development of new 
computational algorithms to analyze the PDEV-associ-
ated omics data is a significant requirement. Recently, the 
characteristics of nanoparticles from plants have been 
annotated in FoodEVs from FAO/INFOODS database 
(https://www.fao.org/infoods/infoods/tables-and-data-
bases/faoinfoods-databases/en/) [37]. Beyond doubt, the 
emerging studies on PDEVs have already revolutionized 
our knowledge of intercellular communication. Further-
more, PDEVs display the capacity to re-engineer them-
selves with specific biomarkers or compounds for precise 
therapy. However, there are still several unresolved con-
cerns governing the extraction and function of PDEVs.

Currently, technological advancements have allowed 
researchers to isolate and characterize EVs. Several 
methods, such as filtration plus centrifugation, poly-
mer-based precipitation, microfluidics technologies and 
immunoaffinity capture-based isolation, are frequently 
utilized for mammal-derived EVs but not for PDEVs 
[33, 103]. These techniques require different sample pre-
processing procedures, and produce mammalian EVs 
of varying quality and purity. The EVs from cell culture 
media or body fluids are frequently subjected to multiple 
centrifugal procedures [112]. It’s worth noting that these 
centrifugation steps may be different depending on the 
experimental design, sample properties, and downstream 
analysis [113]. The polymer-based precipitation is a strat-
egy employed to isolate EVs from the biofluids by altering 
their solubility. Using the commercial ExoQuick-TC kit, 
polymer-based precipitation could yield higher quantities 
of exosomal cargoes than the centrifugation [114]. Alter-
native method for isolation of mammalian EVs is a micro-
fluidic exosome isolation and detection system (EXID 

Table 3  The clinical trials of PDEVs and their great potential for 
biomedicine research
Identifier Plants Status Diseases Functions Refs
NCT01294072 Fruits Recruiting Colon 

cancer
Deliver 
curcumin to 
cancer tissues 
after oral 
administration

(107)

NCT04879810 Ginger Completed Irritable 
bowel 
disease

Anti-inflam-
matory effects

(108)

NCT01668849 Grape Completed Head 
and neck 
cancer

Reducing 
oral mucositis 
during 
radiation and 
chemotherapy

(107)

NCT03493984 Gin-
ger or 
aloe 
plants

Withdrawn Polycystic 
ovary 
syndrome

Mitigating 
insulin resis-
tance; Anti-
Inflammation

/

https://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/
https://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/
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system), which could incorporate the exosome capture 
and biomarker labelling on a microfluidic chip [115]. This 
integrated system enables one-stop capture, isolation and 
detection of exosomes from cancer cells and peripheral 
blood samples. However, the purification methods for 
PDEVs are still waiting to be fully tapped. To date, the 
most traditionally used techniques for PDEV extraction 
are the different centrifugal-based methods. In 2009, the 
Regente lab initially developed the vacuum infiltration-
centrifugation procedure and applied this technology 
to successfully separate the sunflower seed-derived EVs 
[13]. Later, multiple research groups used differential 
ultracentrifugation to separate and purify EVs from plant 
tissues [116–118]. A recent review by Urzì O, Raimondo 
S, and Alessandro R succinctly summarized the represen-
tative steps of ultracentrifugal methods for PDEV extrac-
tion [111] (Fig. 4). In brief, after the tissues are manually 
squeezed by juicers, low-speed centrifugation at 500–
3000  g for about 30  min was initially used to remove 
large particles and plant fibers. Next, intermediate-speed 
centrifugation, about 2000–10,000  g for 30  min, was 
used to remove the cell fragments and organelles. At 
last, high-speed centrifugation at 100,000–150,000 g for 
about 2 h was used to acquire the EV pellets. Although 
specialized equipment and much time are required, these 
ultracentrifugation-based strategies have been defined 
by different studies as the well-established gold standard 
for PDEV preparation [119]. In addition, some handy 
and rapid isolation methods have been established to 

facilitate future biochemical studies and downstream 
applications of PDEVs. The project of Jackson’s group was 
to evaluate a rapid hydrophobic interaction chromatog-
raphy (HIC)-based capillary-channeled polymer (C-CP) 
tip isolation strategy for PDEV isolation. This HIC-based 
C-CP tip successfully obtains the desirable integrity and 
yield of PDEVs and is less time-consuming and low-cost 
[120]. Another efficient method for PDEV preparation, 
electrophoresis combined with a 300 kDa cut-off dialysis 
bag, has also been demonstrated to be time-saving [63]. 
Şahin et al. [121] utilized a commercial kit, Exo-spin™ 
Exosome Purification Kit, to isolate the homogenous 
and stable PDEVs from wheat grass juice. Although effi-
cacious, most of these processes depend on specialized 
instruments or lack standard protocols, consequently 
representing a limitation for their clinical applications 
[106]. The method using polyethylene glycol (PEG) could 
effectively prevent Nicotiana tabacum-derived vesicles 
from forming the aggregates [122]. In the future, there is 
an urgent need to develop the standardization of quali-
tative and quantitative procedures to better achieve the 
successful commercialization of PDEVs in the field of 
translational medicine.

It should be noted that environmental conditions criti-
cally affect the stability and biological activities of PDEVs. 
Moreover, the intrinsic properties of isolated PDEVs are 
subject to change with some physical parameters, includ-
ing pH values, temperature, and other processing factors 
[3, 15]. Under a simulated stomach condition, the PDEVs 

Fig. 4  Representative steps of ultracentrifugation-based strategies for PDEV extraction
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have the potential to resist gastric digestion and main-
tain high stability [60]. Unfortunately, at the moment, 
few studies have specifically investigated the effect of the 
environment on the structural integrity and bioactivity of 
PDEVs [109]. A recent study by Berger’s group showed 
that the altered morphology of PDEVs was found in the 
unpasteurized juice prepared by industrial processes. 
Furthermore, no PDEVs were detected in the concen-
trated orange juice [41]. By comparing the quantity and 
quality of PDEVs isolated from organic farms or conven-
tional farms, Logozzi et al. [87] found that the former 
materials resulted in greater yield and higher anti-oxidant 
capacity. Thus, various environmental factors should be 
well considered for the plant sample collection and PDEV 
extraction.

The pathogen invasion generally induces infection and 
damages plant tissues. Phytoviruses are widely observed 
in animals, humans, as well as other environmental sub-
stances [123]. Independent scholars successfully con-
firmed the existence of phytovirus infection-associated 
molecules in the plant resource-derived nanovesicles 
[124, 125]. Moreover, they recognized several similar 
physical features between virus particles and PDEVs, 
such as particle size. In addition, plant viruses present in 
plant materials were frequently co-extracted with PDEVs 
[126], suggesting viral contamination in plant nanovesicle 
samples. Thus, it is imperative to develop novel platforms 
and strategies to remove virus particles from PDEV iso-
lates and overcome virus contamination. Accordingly, 
with the help of the sucrose- or iodixanol-based density 
gradient ultracentrifugation technique (DGUC), Mam-
madova and colleagues effectively separated PDEVs from 
viral particles in tomato homogenate [126]. This has 
motivated the exploration of developing more promis-
ing technologies to purify PDEVs without possible virus 
contamination.

Conclusions
In conclusion, emerging evidence from preclinical and 
clinical studies has shed light on the biomedical applica-
tion potential of natural PDEV-based strategies for phar-
macogenetic discovery and validation. The molecular, 
biological, genetic, and pharmacological technologies 
suggest that natural and endogenic PDEVs have many 
attractive advantages, especially high stability, intrinsic 
bioactivity, and easy absorption by the recipient cells. 
Furthermore, numerous bioactive cargoes with pharma-
ceutical interest were demonstrated on PDEV isolates. 
As a promising drug delivery system, PDEVs can increase 
the sensitivity of drugs against numerous pathologies and 
concomitantly reduce their toxic side-effects. However, 
the underlying molecular mechanisms and biological fac-
tors driving the functions of PDEVs in diseases remain 
to be defined. The already-existing information offers 

fascinating and promising insights into the potential ben-
efits of PDEVs for their medical translation in the future.
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