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Abstract 

With increasing proportion of the elderly in the population, age-related diseases (ARD) lead to a considerable health-
care burden to society. Prevention and treatment of ARD can decrease the negative impact of aging and the burden 
of disease. The aging rate is closely associated with the production of high levels of reactive oxygen species (ROS). 
ROS-mediated oxidative stress in aging triggers aging-related changes through lipid peroxidation, protein oxidation, 
and DNA oxidation. Antioxidants can control autoxidation by scavenging free radicals or inhibiting their formation, 
thereby reducing oxidative stress. Benefiting from significant advances in nanotechnology, a large number of nano-
materials with ROS-scavenging capabilities have been developed. ROS-scavenging nanomaterials can be divided 
into two categories: nanomaterials as carriers for delivering ROS-scavenging drugs, and nanomaterials themselves 
with ROS-scavenging activity. This study summarizes the current advances in ROS-scavenging nanomaterials 
for prevention and treatment of ARD, highlights the potential mechanisms of the nanomaterials used and discusses 
the challenges and prospects for their applications.
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Introduction
With the ameliorating sanitary conditions and the con-
tinuous development of the economic status, popu-
lation aging becomes a major global phenomenon 
revealing a steady increase in life expectancy among 
geriatrics. According to the World Population Prospects 
2019 issued by United Nations, the global population of 
people over 65  years is expected to increase from 703 
million to 1.5 billion by 2050 (from approximately 9% 
in 2019 to nearly 16% in 2050) [1]. Aging has become a 
major health concern in the world as it is the primary 
driver for most chronic diseases, such as cardiovascular 
diseases, type 2 diabetes, glaucoma, obesity, Alzheimer’s 
disease, Parkinson’s disease, macular degeneration, and 
osteoarthritis. Given the increasing aging population and 
age-related adverse side effects, it is crucial to understand 
the molecular mechanisms underlying aging and explore 
more efficient therapeutic strategies [2, 3].

Scientists have been exploring mechanisms of aging 
and developing methods to postpone senility, including 
cross-linkage theory of aging [4], the free radical theory 
[5], telomere shortening theory [6], and immune senes-
cence theory of aging [7]. The free radical theory of aging 
posits that excessive reactive oxygen species (ROS) and 
oxidative stress (OS) cause oxidative damage and abnor-
mal functioning of biomolecules (e.g. DNA, proteins 
and lipids), leading to damage of cells and tissues. In this 
process, organisms gradually lose their functional and 
adaptive capacity to the point of aging [5, 8, 9]. ROS are a 
class of free radicals, including oxidizing substances such 
as superoxide anion (·O2·), hydrogen peroxide (H2O2), 

hydroxyl radical (OH-), and singlet oxygen (1O2). OH- 
are one of the most reactive ROS. OH- and ·O2·  can 
react with other molecules, leading to lipid peroxida-
tion, protein oxidation, and DNA damage, thus triggering 
cell damage and death. In addition, ·O2·  is a precursor 
to other ROS and can generate more toxic ROS species. 
Excessive amounts of H2O2 can lead to cytochrome oxi-
dation, protein oxidation and DNA damage, ultimately 
leading to cell death. 1O2 can react with double-bond-
containing biomolecules in organisms to cause oxidative 
damage. For example, it can trigger lipid peroxidation, 
which damages the integrity of cell membranes and 
affects cell function. Consequently, scavenging ROS by 
antioxidants may be an effective strategy for slowing the 
progression of aging-related disease. Antioxidants could 
approximately be classified as hydrophilic antioxidants 
like vitamin C, glutathione (GSH) and lipophilic antioxi-
dants like vitamin E, carotene, coenzyme Q10 (CoQ10). 
Recent studies have revealed the pharmacological prop-
erties of antioxidants both in vivo and in vitro, while clin-
ical trials involving antioxidants have produced largely 
disappointing results [10]. Antioxidants’ medicinal 
potential is constrained by their poor stability and low 
utilization [10]. Therefore, developing new methods for 
the application of antioxidants is essential.

ROS-Scavenging nanotechnology has emerged as an 
exciting and promising new means of treating age-related 
disease. Nanomaterials (NMs) are particles between 1 
and 100  nm in size. Due to their nanoscale size, these 
particles have greater surface area and higher surface-
to-volume ratios, have higher mechanical strength, and 
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are quite stable [11]. NMs can be utilized as medication 
carriers. In order to preserve tiny molecules from degra-
dation or to facilitate the absorption and distribution of 
natural antioxidants, polymeric nanoparticles are used 
to encapsulate or integrate the molecules. Additionally, 
NMs offer weak water-soluble antioxidants greater solu-
bility and improved surface functionalization to produce 
target-specificity. Some nanoparticles (NPs) that have a 
quenching impact on ROS can be used directly as antiox-
idants. Fullerene (C60) and its derivatives and other inor-
ganic NMs with inherent catalytic characteristics (such 
as platinum (Pt) and gold (Au)) are examples of common 
ROS-detoxifying nanoplatforms [12–14]. ROS Scaveng-
ing nanotechnology show great potential in the preven-
tion and treatment of ARD.

In this perspective, we investigate the use of ROS-
scavenging nanotechnology in ARD, discussing its safety, 
prospective uses, potential applications, and translational 
challenges in order to promote progress in the develop-
ment of new treatments.

Reactive oxygen species and the oxidative stress 
theory of aging
Source of ROS
The free radical theory of aging is predicated on the 
premise that age-related functional declines are the 
result of ROS-induced damage accumulation. ROS are 
a group of oxygen-containing chemical substances that 
are highly reactive, mainly generated by redox reactions 
in the organism. ROS are classified as either free radi-
cals or non-free radicals [15]. Free-radical ROS includes 
superoxide anion radical (·O2·), hydroxyl radical (OH), 
peroxyl radical (ROO), and sulfhydryl peroxyl radical 
(RSOO). Non-free radical ROS includes hydrogen perox-
ide (H2O2), organic hydroperoxides (ROOH), ozone (O3) 
and singlet oxygen (1O2). Excessive ROS can cause the 
disruption of the balance between the pro-oxidant and 
anti-oxidants, leading to OS [16].

ROS are generated in multiple compartments and 
by a variety of enzymes within the cell, and there are 
endogenous and exogenous ROS in body [17] (Fig.  1). 
Endogenous ROS are mainly produced directly by 
various organelles such as mitochondria, cytoplasmic 

Fig. 1  Categories and source of ROS. Created with BioRender.com
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membrane, endoplasmic reticulum (ER), peroxisomes, 
and lysosomes. The most significant source of ROS pro-
duction occurs mainly in the mitochondrial electron 
transport chain (ETC) complexes I, II and III, due to 
electron leakage [18, 19]. ETC transfers electrons from 
NADH to O2 and generate ·O2·, which can then be rap-
idly broken down to H2O2 by superoxide dismutase 
(SOD). When Fe2+ and Cu2+ are present, H2O2 can also 
be converted to ·OH through the Fenton reaction. The 
protein misfolding process that occurs in ER is also 
accompanied by the production of ROS [19]. ROS pro-
duction on ER is generated by delivering electrons to 

O2 by NADH-cytochrome P450 reductase to form ·O2·, 
with electrons delivered to O2 by the electron transport 
chain on the nuclear membrane, assisted by NADH 
[20, 21]. In addition, various types of oxidase such as 
NADPH oxidase (NOX), cytochrome P450 (CYP) 
enzymes, xanthine oxidase (XO), nitric oxide synthase 
(NOS), which promote the production of endogenous 
ROS [22, 23]. Hypoxanthine can be converted to xan-
thine catalyzed by XO in a process accompanied by the 
reduction of O2 to ·O2·. Endothelial nitric oxide syn-
thase (eNOS) produce ·O2·. Monoamine oxidase, lipox-
ygenase and cyclooxygenase enzymes, can also promote 

Fig. 2  Oxidative damage of protein, lipid and DNA. Copyright 2020, Elsevier. Copyright 2002, Elsevier
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the production of ROS in normal biological reactions. 
Additionally, genetic factors can potentially contribute 
to oxidative stress. The copper (zinc) superoxide dis-
mutase 1 (SOD-1) gene is the most prevalent genetic 
contributor to amyotropic lateral sclerosis (ALS), which 
accounts for 5–10% of cases. The mutations in this 
gene, which enhance oxidative stress in the cells, pro-
mote protein deposition, disrupt intracellular calcium 
ions, and cause the diffusion of toxicity, are responsible 
for around 20% of familial ALS and 2% of sporadic ALS 
[24]. Exogenous ROS are induced by external factors 
including alcohol, cigarette smoke, heavy metals (lead, 
chromium), industrial solvents, pesticides, medications 
like halothane and nonsteroidal anti-inflammatory 
medicines, radiation, and other pollutants such as air 
and water pollutants [25]. In addition, ischemia–rep-
erfusion (I/R) damage, infections, and inflammation all 
lead to increased levels of ROS [26].

Oxidative damage of ROS in aging
The aging process is a loss of internal homeostasis due 
to the accumulation of molecular damage to macromol-
ecules such as DNA, lipids and proteins. Under physi-
ological circumstances, the intracellular generation 
and scavenging of ROS is usually in homeostasis [27]. 
At low concentrations, ROS participates in cell growth 
and survival, immune response, metabolic regulation, 
and cell signaling process [28, 29]. OS is determined 
by an imbalance between ROS generation and antioxi-
dant defenses, which gradually damages biomolecules 
including DNA, lipids, and proteins by oxidation [30] 
(Fig.  2). Harman formulated the free radical theory of 
aging, indicating that free-radical associated macromo-
lecular damage may promote senescence [5].

Lipid peroxidation
Polyunsaturated fatty acid (PUFA), especially PUFA with 
more double bonds, such as arachidonic acid and lin-
oleic acid, are highly susceptible to ROS and free radicals 
[31]. Since PUFA is the main component of cell mem-
branes, cell membranes are vulnerable to free radical 
damage; when membrane phospholipids come into con-
tact with an inordinate amount of ROS, lipid peroxida-
tion occurs. This extensive lipid peroxidation alters the 
membrane’s structure, reducing its fluidity and compro-
mising its integrity [32]. Moreover, Lipid peroxides are 
also extremely reactive substances that have the ability 
to generate more ROS or breakdown into reactive sub-
stances that can crosslink proteins and DNA. They inter-
act with free amino groups in proteins, causing them to 
covalently modify, cross-link, oligomerize, and aggregate. 
These mechanisms, which produce intracellular damage, 

decrease cell activities and induce cell death, have been 
linked to aging and a variety of ARD.

Protein oxidation
Exposure of proteins to ROS results in multiple changes, 
including amino acid residues oxidation, protein frag-
mentation due to oxidative cleavage of the peptide 
backbone, irreversible production of protein carbonyl 
compounds and generation of protein–protein cross-
linkages [33–36]. With the accumulation of oxidative 
damage, proteins are more likely to misfold. Moderately 
oxidized proteins are degraded by the proteasome [37], 
while severely oxidized proteins can cross-link with 
other proteins, thus preventing their degradation [38]. 
As a result, severely damaged proteins accumulate within 
the cell, altering physiological properties such as loss of 
catalytic activity and paralysis of regulation of metabolic 
pathways. It is known that dysfunctions in the cellular 
apparatus of protein quality control contribute to aging 
and ARD, such as neurodegenerative and cardiovascular 
diseases [39].

DNA oxidation
ROS generate major OS when they react with nitrog-
enous bases and deoxyribose. DNA oxidation damage 
mainly include base mutation, strand breaking, DNA–
protein cross-links, and formation of DNA-adducts [33]. 
Direct strand excision and oxidative damage to pyrimi-
dine and purine bases are both effects of hydroxyl radical 
stress on DNA. In addition to oxidizing DNA bases, ROS 
may potentially disrupt DNA strands by attacking the 
DNA backbone with free radicals [40, 41]. Furthermore, 
adducts to DNA can be formed through the reaction of 
deoxyguanosine and other macromolecular modifica-
tions triggered by ROS [42]. In addition, mitochondrial 
DNA (mtDNA) is highly susceptible to ROS, and has a 
significantly higher mutation rate than nuclear DNA. 
Histones and other chromatin-associated proteins pre-
sent in the nuclear genome, which function as free radi-
cal scavengers, but not in the mitochondrial genome [43]. 
The persistence and accumulation of damaged mtDNA 
in the mitochondria inevitably lead to more ROS pro-
duction, which in turn cause further damage. DNA 
damage can cause aging by affecting transcription, apop-
tosis signaling or cellular senescence or through somatic 
mutations and telomere shortening [44–46]. Continuous 
oxidative damage to mtDNA has been linked to aging, 
inflammation, carcinogenesis, and the development of 
malignancy [47]. The DNA damage response which con-
sists of the activation of checkpoint pathways, cell cycle 
arrest and DNA repair, removes most of ROS-induced 
DNA damage [48].
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8-hydroxyguanosine (8-OHG) is the oxidized base 
that occurs most frequently in RNA. Guanine is initially 
reacted with by the extremely reactive hydroxyl radical, 
which subsequently produces 8-OHG after losing an 
electron (e −) and proton (H +) [49]. The oxidized RNA is 
substantially intact, while its translation fidelity has been 
severely diminished. The oxidative alteration of RNA dis-
rupts the translational process and impairs protein syn-
thesis, causing cell degeneration or even cell death [50].

ROS‑scavenging nanotechnology and scavenging 
mechanisms
A new window of opportunity has opened up for the 
advancement of conventional antioxidant therapy thanks 
to the recent proliferation of nanotechnology and nano-
science in the construction of ROS scavengers. It is pos-
sible to classify ROS-scavenging NMs as carriers for 
delivering natural antioxidants or nanomaterials with 
inherent ROS-scavenging activity (Fig. 3).

Nanomaterials for catalytic generation of ROS‑scavenging 
agents and its mechanisms
Nanomaterials with ROS scavenging activity include 
metals and metal oxides, carbon-based nanomaterials, 
enzyme-like nanoparticles, selenium and (2,2,6,6-tetra-
methylpiperidin-1-yl)oxyl (TEMPO). In the following 
section, we  provide an overview of ROS-scavenging 

nanomaterials, focusing on their distinctive redox prop-
erties and mechanisms. Table 1 outlines the key aspects 
of select ROS scavengers.

Strong catalytic activity is shown by nanoscale noble 
metal NMs like palladium (Pd), Au, and Pt, which is pri-
marily ascribed to their huge specific surface area and 
larger fraction of metal atoms on their surfaces [51]. 
These nanocatalysts of noble metals have been proposed 
as possible antioxidants. Although AuNPs are not typi-
cally considered to possess redox activity, they serve as 
an ideal platform for electrochemical biosensors. This 
is because they can function as redox catalysts, thereby 
enhancing the electron transfer of various electroactive 
biological species (primarily redox proteins) without 
necessitating the use of electron transfer mediators [52]. 
Pt NMs are a viable choice to treat the oxidative damage 
due to their potent peroxidase POD-, CAT-, and SOD-
like nanozyme activities that catalytically convert O2 to 
H2O2, H2O2 to H2O and O2 [53–56].

The high redox potential of Prussian blue (PB) NMs is 
due in large part to their high electron transfer capacity. 
Using an inflammatory model, Zhang et al. showed that 
PB NMs had the capacity to prevent or alleviate ROS-
induced damage [57]. The antioxidant enzymes POD, 
CAT, and SOD are responsible for their catalytic activity 
and, by extension, their capacity to scavenge reactive oxy-
gen species.

Fig. 3  ROS-scavenging nanomaterials in treatment of ARD. Created with BioRender.com
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Copper (Cu) NMs possess excellent catalytic activity 
like POD-, CAT-, SOD-, and GSH-like enzyme activities 
[58]. It improves the body’s capacity to rid itself of free 
radicals by increasing the efficiency with which SOD and 
other enzymes function [58–60].

Manganese (Mn) is an important element that plays a 
role in several cellular processes and metabolic reactions 
in the human body. The strong POD-, SOD-, and CAT-
like activities of Mn4+ NMs have been shown in a num-
ber of different investigations [61–63]. Mn NMs (Mn4+) 
directly catalyze H2O2 to produce O2 and Mn2+. Then, 
Mn NMs (Mn2+) may imitate SOD function by reacting 
with ·O2· to produce H2O2. Mn3O4 NMs mimic the func-
tion of glutathione peroxidase (GPx), CAT, and SOD [64].

Due to the existence of Ce3+/Ce4+ (oxidized/reduced) 
and compensatory oxygen vacancies, cerium-based NMs 
have emerged as one of the most common ROS scav-
engers, enabling them to release or abstract an electron 

to neutralize different types of ROS [65–67]. In general, 
CeO2 NMs possess efficient redox activity to convert ·O2· 
to O2, react with HO·, catalyze the degradation of H2O2, 
scavenge ONOO − , exhibiting SOD (Ce3+) and CAT 
(Ce4+) mimetic activity to prevent oxidative injury to 
cells [68–71].

Nanomaterials having carbon frameworks, such as 
graphene, graphdiyne, and C60 and its derivatives, may 
be among the most prevalent ROS quenchers [72–74]. 
In the previous publication, the antioxidant capabilities 
of C60 and their derivatives were ascribed to the effec-
tiveness of the C60 molecule, which can eliminate ROS 
through the C60’s delocalized double bond system [75, 
76]. C60 extinguishes ROS by accepting unpaired elec-
trons, capable of receiving up to six electrons and accom-
modating as many as 34 methyl free radicals on the C60 
sphere [75]. C60 has SOD-like activity [76].

Table 1  Nanomaterials with ROS scavenging activity and its mechanisms

Drug mechanisms References

Nanomaterials with ROS scavenging activity CeO2 NPs SOD- and CAT-mimetic nanozyme activities, convert ·O2· to O2, react 
with HO·, catalyze the degradation of H2O2, scavenging activity 
for ONOO − 

[68–71]

Pt NPs POD-, CAT-, and SOD-like nanozyme activities, catalytically convert 
·O2· to H2O2, and H2O2 to H2O and O2

[56]

Cu NPs POD-, CAT-, SOD-, and glutathione-like enzyme activities [58]

PB NPs POD-, CAT-, and SOD-like multienzyme activities [57]

SOD-containing NPs SOD enzyme activity, catalyze the neutralization of ·O2· to O2 
and H2O2

[82]

TEMPO partially mimic SOD, capture ROS via the single electron on nitroxide [81]

Fullerene SOD-like activity [76]

gold NPs SOD,TAC-like activity [83]

Se NPs Se is incorporated as selenocysteine (SEC) in various antioxidant 
enzymes like GPx, thioredoxin reductase (TXNRD) and selenoprotein 
P (SELENOP). Se acts as the redox centre of all these enzymes

[78, 79]

Mn3O4 NPs GPx, CAT, and SOD activity [64]

Nanomaterials as carriers Curcumin Redox-activity due to low O–H bond dissociation energy [84, 85]

Bilirubin Scavenge ·O2·, H2O2, and ·OH via an ROX-initiated redox reaction [86]

Polydopamine (PDA) Scaveneg ·O2·, H2O2, and ·OH via redox chemistry of polycatechol 
structure

[87]

CoQ10 shuttle electrons from complexes I and II to complex III of the mito-
chondrial respiratory chain

[88]

resveratrol maintain the expression of SOD1,CAT,GPx [89, 90]

Vitamin C produce reactions with oxidizing agents through HAT, SET or a con-
certed transfer of electron/protons (SET/HAT), react with ·O2· and ·OH 
in the cytoplasm

[91]

Vitamin E prevent lipid peroxidation chain reactions and quenches O2 in cel-
lular lipid compartments, reduce alkoxy radicals by transferring 
the phenolic hydrogen atom  of the chroman ring
reduces alkoxy radicals by transferring the phenolic hydrogen atom 
of the chroman ring

[92]

H2 specifically neutralize OH and peroxynitrite, enhance the expression 
of heme oxygenase-1 (HO-1) by activating nuclear factor erythroid-
related factor 2 (Nrf-2)

[93]
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Selenium (Se) functions as a redox center for GPx. 
Supplying with Se may raise GPx levels, increase H2O2 
decomposition and decrease cell damage [77]. Seleno-
protein P (SELENOP) and GPx are two of the antioxidant 
enzymes that assimilate Se NMs as selenocysteine (SEC). 
The redox center of these enzymes is the element Se [78, 
79].

(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) is 
a well-known ROS scavenger because it can capture 
unpaired electrons from other radicals by a single elec-
tron on nitroxide, and the redox reaction switch between 
oxidation states of nitroxide, oxoammonium cation, and 
hydroxylamine [80]. TEMPO is a membrane-permeable 
stable nitroxide radical that can scavenge superoxide and 
performs Fenton reactions and radical–radical recombi-
nation [81].

Applications of nanocomposites in ROS‑scavenging 
nanotechnology
A typical tactic for preserving redox equilibrium and 
minimizing OS damage is the introduction of extracel-
lular ROS scavengers. Vitamin C, Vitamin E, CoQ10, 
resveratrol, MLT, quercetin, curcumin, H2 and other nat-
ural antioxidants make up the majority of the chemicals 

employed in the creation of antioxidant nanoparti-
cles (Table  1). Nanomaterials can be used to composite 
not only natural antioxidants but also nano-enzymes 
to improve antioxidant properties and functionality. In 
addition to enhancing the stability and bioavailability 
of ROS scavenging drugs, NMs as delivery vehicles can 
also achieve targeted and controlled drug delivery. In 
the meantime, NMs as carriers may reduce the admin-
istered dose of medications, thereby minimizing adverse 
effects. By using a range of delivery vehicles, including 
liposomes, nanospheres, nanoemulsions and nanocrys-
tals, the delivery techniques of the aforementioned non-
enzymatic antioxidants have up till now been extensively 
explored (Table 2).

ROS‑Scavenging nanotechnology in prevention 
and treatment of ARD
Therapeutic interventions towards oxidative stressmight 
allow restoring the health and curing the aged-related 
diseases that share basal processes. Overproduction of 
ROS leadsto oxidative stress, which has been observed 
in diabetes, cardiovascular disease, idiopathic pul-
monary fibrosis,neurodegenerative diseases, skeletal 
degenerative diseases, skin aging, reproductive system 

Fig. 4  ROS-Scavenging nanotechnology in prevention and treatment of age-related diseases. Created with BioRender.com
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aging, and ocular aging. Wefocused on the implications 
of NPs-mediated ROS scavenger systems in aging and 
age-related diseases to provide insights intoa potential 
intervention that may affect the aging process, and subse-
quently promote healthy longevity (Fig. 4).
Type 2 diabetes mellitus
Type 2 diabetes mellitus (T2DM) is a burden on the geri-
atric population’s health, afflicting almost 25% of those 
over 65 years old [115]. There are several recognized con-
tributors to the pathophysiology of T2DM. ROS and OS 
play roles in all of them, including hyperglycemia, hyper-
lipidemia, inflammation, insulin resistance, and endothe-
lial dysfunction. In hyperglycemic conditions, the polyol 
pathway attempts to reduce excess glucose to sorbitol 
by using NADPH. Thus NADPH is unable to produce 
the reduced GSH responsible for the inhibition of OS 
[116]. Under diabetic conditions, glucose is easily oxi-
dized, causing the formation of H2O2 and other reactive 
byproducts [117]. There is evidence from clinical studies 
that strong correlations exist between the levels of pro-
oxidants and OS-induced tissue damage indicators such 
as oxidation of DNA bases, 4-hydroxy-2-nonenal (HNE) 
proteins, hydroperoxides, 8-hydroxy-deoxyguanine, and 
8-epi-prostaglandin [118–120]. Therefore, one of the 
greatest options to lessen the negative consequences of 
T2DM is antioxidant medication.

Se NMs have been utilized in conjunction with other 
nanomaterials to boost their antioxidant properties. 
Hanaa et  al. treated diabetic mice with liposomes-Se 
(L-Se) nanoparticles. L-Se reduced serum glucose, pan-
creatic malondialdehyde (MDA), nitric oxide (NO), 
tumor necrosis factor-α (TNF-α), and prostaglandin F2α 
(PGF2α) levels. The treated diabetic mice also had higher 
serum insulin, pancreatic GSH, SOD, CAT, GPx, and 
GSH reductase (GR) levels [121]. Polysaccharide (RTFP-
3)-functionalized Se nanoparticles (RP3-SeNPs) pro-
tected pancreatic islet cells in INS-1 cells from oxidative 
damage in another study. RTFP-3 owed high biocompat-
ibility and biodegradability, while it exhibited antioxidant 
and α-glucosidase-inhibiting activities. RTFP-3 could 
generate synergistic effect with SeNPs [122]. The combi-
nation of Nanocerium and sodium selenite was verified 
that improved antioxidant enzymes and decreased oxida-
tive stress more effectively than either alone [123].

Applications of AuNPs and ZnO NPs are being 
researched feverishly. AuNPs were discovered that they 
could inhibit lipid peroxidation and regulate antioxidant 
enzymes such as SOD, CAT, and GPx in diabetic mice. 
The AuNPs regulate hyperglycemia by scavenging free 
radicals, inhibiting the formation of ROS, and boost-
ing antioxidant defense enzymes [83, 124]. Additionally, 
silver-gold nanoparticles (Ag@AuNP) with a core–shell 
structure were tested on diabetic rats. The Ag@AuNPs 

had better effects and lower expenses than AuNPs in 
reduction of blood glucose level and insulin resistance, as 
well as increasing insulin level [125].

ZnO NPs exhibit high antioxidant capabilities through 
the scavenging of ROS and the up-regulation of anti-
oxidant enzyme activities. Furthermore, it had a hypo-
glycemic impact in diabetic mice via enhanced insulin 
production and glucose absorption by the liver, skeletal 
muscles, and adipose regions [126, 127]. Prissana et  al. 
reported the treatment effects of doping silver (Ag) into 
the ZnO nanorods (ZnO:Ag NR’s) in a diabetic murine 
model. The silver-doping strategy appears to effectively 
enhance the antioxidant potential of ZnO, as evidenced 
by their activities in scavenging NO, DPPH, and ·O2· 
[128].

Nanoparticles have limited use in diabetic treatment. 
Functionalized gadofullerene was later demonstrated to 
improve defective glycolipid metabolism in type 2 dia-
betic mice. However, gadofullerene’s effect on clearance 
of ROS is negligible [129]. To ensure their success, it 
must be followed by carefully executed parallel bio-distri-
bution and toxicity investigations.

Atherosclerosis
The main pathological manifestation of Atherosclerosis 
(AS) is lipid deposition in some arterials with smooth 
muscle cells and fibrous matrix proliferation, which 
progressively develop into atherosclerotic plaques. 
There is a correlation between the degree of oxidation 
and the severity of AS. And it has been shown that oxi-
dative changes of lipids and proteins have been found 
in vascular lesions [130]. Several processes involved 
in atherogenesis have been linked to ROS, including 
adhesion molecule expression, increased proliferation 
and migration of vascular smooth muscle, endothelial 
apoptosis, lipid peroxidation, matrix metalloproteinase 
activation and alterations in vasomotor activity [131]. 
Vascular endothelial cells experience chronic OS due 
to a decrease in the production of antioxidant enzymes 
such as SOD and CAT, leading to an increase in free 
radicals and ROS [132]. Hence, prevention of vascular 
OS represents crucial therapeutic strategy of AS.

Research on Nano-modification of traditional Chi-
nese medicine is booming in AS, especially on the intel-
ligent and biomimetic modification of their carriers.

Ginsenoside (Re) is a powerful component with anti-
inflammatory and antioxidant characteristics [133, 
134], as well as the ability to improve AS [135]. CAT 
and Re were co-loaded onto the surface of porous poly 
(lactic-coglycolic acid) (PLGA) NPs to develop a dual 
targeted model and multi-mechanism therapeutic bio-
mimetic nanosystem (Cat/Re@PLGA@UCM) [108, 
136]. The biomimetic nanosystem not only exhibit the 
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ability to scavenge ROS, but also enable escaping mac-
rophage phagocytosis and targeting atherosclerotic 
plaques, and H2O2-responsive drug release ability. The 
nanodrugs reduced atherosclerotic area 2.7-fold better 
than free Re.

Teng Wu et  al. established a smart medication deliv-
ery device that adapted to the oxidative microenviron-
ment of atherosclerotic plaques [137]. Poly (ethylene 
glycol) and poly (propylene sulphide) (PEG-PPS) was 
used to make andrographolide-loaded micelles. Andro-
grapholide-loaded PEG-PPS micelles reduce inflam-
mation and OS simultaneously. After oxidation, PPS 
becomes hydrophilic, improving medication distribution 
and effectiveness.

Meili et  al. developed a smart system for reacting to 
the microenvironment of atherosclerotic plaques, which 
included ROS and shear stress. Red blood cells (RBCs) 
and simvastatin-loaded micelles (SV MC) comprised the 
system. RBCs were utilized to extend the circulation and 
improve the therapeutic effect. SV MC@RBCs micelles 
were ethylenediamine-functionalized ring-opened poly 
(glycidyl methacrylate)-poly (propylene sulfide) (PGED-
PPS). The micelle ruptured when high ROS made hydro-
phobic PPS hydrophilic, releasing medication. PPS also 
reduces ROS, enabling synergistic AS therapy with medi-
cines and materials [138].

Ferulic acid nanoparticles primarily inhibit the pro-
duction of ROS by suppressing the expression of oxLDL 
receptors. Rebecca A. Chmielowski et al. developed fer-
ulic acid-based poly (anhydride-ester) nanoparticles to 
reduce oxLDL absorption and ROS in human monocyte-
derived macrophages (HMDMs) [139]. Ferulic acid-based 
polymer nanoparticles, which were biodegradable, may 
release ferulic acid sustainably and tunablely to inhibit 
macrophage foam cell production.

CeO2 nanoparticles could protect endothelial 
cells (ECs) from oxidative damage by counteracting 
H2O2-induced ROS [140]. Gao et al. found that the gado-
linium doping of CeO2 (Gd/CeO2) nanozymes promoted 
the surface proportion of Ce3+ and ROS catalytic activ-
ity [141]. The optimized Gd/CeO2 nanozyme, which dis-
played optimal CAT and SOD mimic activities, revealed 
enhanced efficacy and anti-inflammatory benefits against 
AS via ROS salvage. Using probucol-loaded mesoporous 
polydopamine (MPDA) carriers and platelet membranes, 
Lu Chen et al. created a bionic multifunctional nanoplat-
form (BM-NP) [142]. BM-NPs selectively aggregated in 
plaque lesions of the ligated right carotid artery (RCA) 
animal model due to platelet membrane adherence to 
damaged blood arteries. BM-NPs’ antioxidant properties 
may synergistically reduce plaque ROS and foamy mac-
rophages, avoiding AS.

Metal NMs like MnO2, Au, and Pt have also been uti-
lized in a wide range of researches. Mesoporous MnO2 
nanoparticles with the modification of hyaluronic acid 
(HA) [143] reached high drug loading capacity of cur-
cumin, which combined the catalytic activity of the 
nanocarrier and the antioxidant functions of curcumin. 
MnO2/HA showed intrinsic catalase mimic activity, 
which catalyzed the endogenous abundant H2O2 into O2 
as self-oxygenation agent to relieve hypoxia in AS site. 
The resulting nanomedicine could also achieve targeting 
drug delivery by HA modification to bind CD44 receptor 
overexpressed on diseased macrophages surface.

Wang et  al. produced raspberry-like Pt and cerium 
bimetallic nanostructures with ticagrelor loading and 
PEGylation (DPTP NRs) for synergistic AS treatment. 
Pt-cerium bimetallic nano-raspberry prevented foam cell 
formation by scavenging ROS and lowering plaque oxi-
dized LDLs more effectively. Ticagrelor reduced plaque 
and platelet aggregation [144].

Another study used a SOD-mimetic agent (Tempol) 
and a H2O2-eliminating substance of phenylboronic acid 
pinacol ester covalently conjugated on β-cyclodextrin 
(β-CD) (TPCD NPs) to treat AS (Fig. 5). TPCD NPs accu-
mulated in atherosclerotic lesions by passive targeting 
through the dysfunctional endothelium and translocation 
via inflammatory cells. TPCD NPs reduced systemic and 
local oxidative stress and inflammation, and eliminated 
oxidized LDL internalization [145].

Wu et  al. covalently bonded Au nanoparticles (Au 
NPs) to L-Arginine (LA) and β-cyclodextrin (β-CD) to 
make a NO-driven nanomotor (CD-LA-Au-aV). Modi-
fied anti-VascularCellAdhesionMolecule-1 antibody 
targets and anchored nanomotors to blood vessel walls. 
LA reduced ROS, β-CD cleared cholesterol in foam 
cells, and Au NPs killed inflammatory macrophages. 
Dual-mode nanomotors improved anti-AS efficiency 
[146].

In order to treat AS, a unique tetrapod needle-like PdH 
(TN-PdHs) nanozyme [147] that reacted ROS scaveng-
ing, anti-inflammation, and autophagy activation was 
developed. The oxidative alteration of the confined LDL 
was prevented by the designed TN-PdHs, which also 
decreased OS in the vessels. They were quite effective 
in reducing inflammation, as they reduced levels of pro-
inflammatory cytokines such as TNF-α, IL-1, and IL-6. 
Another study prepared a new type of PdH-Tellurium 
(PdH-Te) nanozyme. This PdH-Te nanozyme not only 
exhibited intrinsic CAT and SOD-like activities, but also 
as worked as an excellent H2 storage material, both of 
which can reach effective treatment through a combina-
tion of scavenging ROS and anti-inflammation [148].

Using porous manganese-substituted prussian blue 
(PMPB) nanocubes (NC), Zhang et al. [149] developed a 
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theranostic agent loaded with simvastatin (Sim). The two 
active components PMPB NC and Sim helped reduce 
atherosclerotic plaques and inflammation by decreasing 
ROS levels (free radicals and H2O2), pro-inflammatory 
cytokine secretion, collagen accumulation, fibrous cap 
thickness, macrophage infiltration, foam cell generation, 

and LDL internalization. Sim as a model drug, Epigal-
locatechin gallate (EGCG) as an antioxidant agent, and 
distearyl phosphatidylcholine (DSPC) as major carriers 
were used to make liposome nanoparticles (SE-LNPs) 
in the study of Jun Wan et al. [95]. SE-LNPs had a pro-
longed release profile, allowing the bulk of medication to 

Fig. 5  An overview of the design, distribution, and targeting capabilities of a nanoparticle with a wide spectrum ROS scavenging capacity. A The 
creation of a TPCD NP and its chemical structure as a ROS-scavenging substance. B TPCD is able to remove H2O2, DHHP, ·O2·, and hypochlorite, 
with the effectiveness depending on the dosage. C Representative transmission electron microscopy (TEM) image, scanning electron microscopy 
image (SEM), size distribution profile and TEM image after phosphotungstic acid staining of TPCD NPs. Copyright 2018, American Chemical Society
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accumulate at the targeted atherosclerotic plaque, which 
might resist oxidation, apoptosis, enhance M2 polariza-
tion, and decrease blood lipids and lesions. Yue Dai et al. 
created GPRD NPs by electrostatically adsorbing Gd-
doped Prussian blue (GPB), polymer polyethyleneimine 
(PEI), fluorescent molecule rhodamine (Rd), and tar-
geted molecule dextran sulfate (DS) [150]. GPRD NPs 
effectively imaged and inhibited AS susceptible plaque 
in  vivo using GPB’s MR and fluorescence imaging, Rd’s 
nano-enzyme, and DS’s targeting abilities. GPB NPs had 
the action without drug loading, simplifying nanocom-
plex production. Yan Zhu et  al. constructed a Prussian 
blue-based nanomedical loading system with hyaluronic 
acid (HA) coating, in which colchicine was encapsulated 
to create col@PBNP@HA [151]. col@PBNP@HA suc-
cessfully reduced MDA and MPO levels and increased 
GSH levels, HA on the drug surface specifically bound 
to CD44 expressed on inflammatory macrophages, 
which allowed the drug to target plaques to eliminate 
inflammation.

Jessica Chavez et al. used carbon nanodots (CNDs) in 
EA.hy926 Endothelial Cells [152]. CNDs effectively scav-
enged H2O2 and increased the activity of the antioxidant 
enzyme NQO1.

Suman Basak et al. drafted novel nitroxide-based nano-
gels (NGs) crafted through controlled RAFT (Reversible 
Addition Fragmentation chain Transfer) polymerization 
to introduce atherosclerosis. Nitroxyl radical-based anti-
oxidants mimic SOD activity, effectively scavenging ROS 
and reducing LDL oxidation. NGs provided increased 
surface area, enhanced accessibility of nitroxide groups, 
higher stability cross-linking, and longer shelf life. NGs 
effectively reduced foam cell formation and prevents oxi-
dative damage [153].

Many appealing properties of nanoparticles include 
their tiny size (and consequently huge surface area per 
volume), relative simplicity of manipulation, and surface 
components. The survival of nanoparticles in plasma and 
their permeability in non-targeted organs and tissues 
must also be explored.

Age‑related pulmonary disease
Idiopathic pulmonary fibrosis
Interstitial remodeling is a hallmark of the degenerative 
lung condition known as idiopathic pulmonary fibro-
sis (IPF). Telomere shortening, DNA damage response 
(DDR), and cellular senescence are all linked to pulmo-
nary fibrosis [154, 155]. ROS causes single-stranded 
DNA damage and breakage, resulting in alveolar epithe-
lial cells (AEC) injury and necrosis via the death recep-
tor route [156], mitochondrial death pathway [157], and 
endoplasmic reticulum-associated death pathway [158]. 
Given the compelling evidence connecting OS to the 

pathophysiology of IPF, targeting ROS may be a success-
ful therapeutic approach.

C60 fullerene has been demonstrated to be capable 
of scavenging multiple types of free radicals, including 
·O2·,1O2, and·OH [159]. At low physiological concen-
trations, water-soluble C60 is innocuous and possesses 
significant antioxidant properties. Dong et  al. found 
that water-soluble C60 reduced the severity of bleomy-
cin-induced pulmonary fibrosis in mice [160]. In AEC, 
water-soluble C60 reduced the concentration of ROS, the 
expression of TGF-1 and TNF, apoptosis, and/or necro-
sis. Gadofullerenol (GF-OH m) and fullerenol (C70-OH) 
NPs were designed as ROS scavengers to inhibit BLM-
induced pulmonary fibrosis in a separate study [161]. 
GF-OH/C70-OH NPs were superior to GF-OH NPs at 
neutralizing OS and scavenging free radicals.

Yinjuan Lv et al. encapsulated copper-based nanozyme 
(CuxO NPs) and gold nanoparticles (Au NPs) in oxida-
tion-sensitive dextran (Oxi-Dex) to synthesize ROS-
responsive nanocomposites (named as RSNPs) [162]. 
CuxO NPs showed superior SOD-like and CAT-like 
activities. RSNPs specifically recognized excess ROS and 
damaged mesenchymal stem cells (MSCs), released ther-
apeutic nanoenzymes, thereby enhancing the anti-oxida-
tive stress capacity of MSCs and prolonging their survival 
time in vivo.

Vanadium carbide nanosheets (V4C3 NSs) were 
reported to serve as a potential antioxidant for treat-
ment of IPF, which triggers multiple antioxidant mecha-
nisms including electron transfer, H atom transfer, and 
enzyme-like catalysis [163]. V4C3 NSs demonstrated sig-
nificant therapeutic efficacy by scavenging ROS and RNS 
(ABTS + •, DPPH•, PTIO•,·OH, ·O2·, H2O2), anti-inflam-
matory activity, and reestablishment of lung antioxidant 
defenses.

Chronic obstructive pulmonary disease
External variables, such as cigarette smoking, air pollu-
tion exposure, and occupational exposures, are major 
contributors to the development of chronic obstructive 
pulmonary disease (COPD). Increases in oxidative load, 
ROS and reactive nitrogen intermediates (RNI) [164], 
which are linked to COPD. COPD patients’ neutrophils 
and airway smooth muscle cells have higher amounts of 
ROS than those of healthy people [165]. Similarly, neutro-
phils isolated from COPD patients’ peripheral blood have 
been found to produce higher levels of ROS compared to 
healthy controls [166]. The degradation of elastin in the 
lung parenchyma might be hastened by OS, which can 
disrupt the activity of antiproteases such alpha-1 antit-
rypsin and secretory leukoprotease inhibitor. OS reduces 
histone deacetylase activity [167, 168] and boosts histone 
acetyltransferase activity [169], resulting in increased 
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expression of proinflammatory marks. Both chronic 
bronchitis and small-airway fibrosis have been linked to 
OS [170, 171].

Multiple materials have been shown to be effective in 
treating COPD, with NMs as vectors for enhancing func-
tions. Chitosan (CS) and SLNs were used to encapsulate 
berberine (Ber) [99]. The effects of Ber pretreatment 
on MPO and SOD activity in cigarette smoke-induced 
COPD mice were amplified by Ber encapsulated in 
SLN-chitosan nanoparticles. The aqueous solubility and 
oral bioavailability of SLN nanoparticles coated with CS 
improve the pharmacological effects of Ber. Paudel et al. 
found that treating human broncho-epithelial cells and 
macrophages with Ber-loaded liquid crystalline nano-
particles (LCNs) improved its physiochemical properties 
such as high entrapment efficiency and sustained in vitro 
release. Ber-LCNs inhibited total cellular ROS, modu-
lated genes associated in inflammation and OS [172].

Likewise, lipopolysaccharide (LPS)-induced oxidative 
damage in human bronchial epithelial cell line (BEAS-
2-B) cells was researched using rutin-loaded liquid crys-
talline nanoparticles (LCNs). LCNs increased transport, 
biological activity, treatment regime, and patient compli-
ance. Rutin-loaded LCNs dramatically lowered NO and 
ROS levels in BEAS-2B cells while also preventing apop-
tosis [173]. Keshav Raj Paudel et al. evaluated the effect 
of zerumbone-loaded LCNs (ZER-LCNs) in cigarette 
smoke extract (CSE)-induced models [174]. The antioxi-
dant activity of ZER is exerted by increasing GSH levels 
to reduce ROS. ZER-LCN showed greater pharmacologi-
cal and biological benefits in reducing smoking-induced 
inflammation, oxidative stress, and aging than free ZER 
alone.

Dimethyl fumarate (DMF) has antioxidant and anti-
inflammatory properties in COPD patients [175]. It 
reduces OS by activating the nuclear factor (erythroid-
derived 2) -like 2 (Nrf2) genetic pathway [176]. Priya 
Muralidharan et  al. [177] created respiratory tract-tar-
geted inhalable DMF dry powders. Solid-state respirable 
microparticles/nanoparticles dispersed aerosols well, 
which show the potential to reach lower airways.

Kosuke Chikuma et  al. developed a co-delivery 
approach using core–shell type lipid-polymer nanopar-
ticles (LPNs) with a poly lactic acid (PLA) core carry-
ing a potent antioxidant Mn-porphyrin dimer (MnPD) 
and a cationic lipid (DOTAP) shell that binds HDAC2-
encoding plasmid DNA (pHDAC2). The co-delivery sys-
tem had low toxicity, high serum stabilities, delayed and 
tuneable drug release, and excellent drug encapsulation 
efficiency. PLA-MnPD/DOTAP/pHDAC2 decreased 
ROS and glucocorticoid resistance in COPD patients 
[178]. S Castellani et al. used SLNs to encapsulate grape 
seed extract (GSE) with proanthocyanidins. GSE-loaded 

SLNs had a longer anti-oxidant impact than free GSE in 
H441 airway epithelial cells. This formulation may reduce 
ROS-induced inflammation during chronic lung illnesses 
[179].

Incorporated polyoxalate (HPOX) may reduce respira-
tory tract inflammation [180]. HPOX NMs scavenged 
H2O2, reduced intracellular OS, and inhibited the expres-
sion of pro-inflammatory mediators like iNOS, cyclooxy-
genase-2 (COX-2), and IL-1β in stimulated macrophages. 
HPOX NMs were biocompatible and strong antioxidants 
and anti-inflammatories for airway inflammatory dis-
eases (Fig. 6).

The lungs are unique compared to other systems in that 
NMs can be administered directly in the lungs to avoid 
first-pass metabolism, thereby increasing local concen-
trations in lungs. However, there are still problems such 
as airway mucus layer barriers, clearance by mucosal cili-
ary clearance systems, and the need to cross the epithe-
lial barrier for the drug to reach the endothelial cell layer. 
All these issues need to be considered together in drug 
design with respect to the chemical-physical properties 
of the NMs [181]. Currently, research is focused on maxi-
mizing delivery efficiency and minimizing toxicity. This 
includes the PEG-modification on surface and optimiza-
tion of osmotic pressure gradient for mucus penetration, 
as well as the optimization of formulation to improve sta-
bility, deep lung deposition, and distribution. To success-
fully transport antioxidants to the lungs, further study is 
required. The potential for immunogenicity and toxicity 
to the lungs is an important factor to consider.

Skeletal and muscle degenerative diseases
A crucial regulator of osteoclast development, both bone 
production and bone resorption is receptor activator of 
nuclear factor Kappa-B ligand (RANKL). Studies have 
indicated that the osteoprotegerin (OPG), receptor acti-
vator of nuclear factor Kappa-B (RANK), and RANKL 
system may play a crucial role in the process tying osteo-
porosis and osteoarthritis together (Fig.  7). Interleukin 
(IL-6, IL-13), TNF, and other inflammatory substances 
that are released have high osteoclastogenic activity and 
can either directly activate osteoclast precursors or stim-
ulate RANKL to promote osteoclast formation. Along 
with the rise in RANKL, a significant amount of RANKL 
binds to the usual level of OPG, causing a compensatory 
drop in OPG and an increase in bone resorption [182].

Due to the denser nature of pathological skeletal tis-
sues, high concentrations of drugs are required to 
achieve efficacy, which can also have toxic effects on 
other organs. Therefore, the development of well-tar-
geted, highly permeable, slow-release, low-toxicity, and 
bone-targeted NMs is in the spotlight [183].



Page 15 of 42Dai et al. Journal of Nanobiotechnology          (2024) 22:252 	

Osteoporosis
Decreased bone density and degradation of bone tissue 
microstructure characterize osteoporosis (OP), a sys-
temic and metabolic disease of aging. OP is characterized 
by increased OC activity relative to OB activity [184]. 
Patients with OP have a bone microenvironment charac-
terized as immune imbalance and increased OS. Exces-
sive ROS under stressful conditions trigger apoptosis in 
OBs and osteocytes while encouraging the development 

and function of OCs [185]. Therefore, enhancing the 
oxidative state is crucial for osteoporosis therapy and 
prevention.

Yanhai Xi et  al. designed PEGylated hollow gold nan-
oparticles (HGNPs) loaded with α-Lipoic acid (ALA) 
(mPEG@HGNPs-ALA) [186]. ALA can suppress intra-
cellular oxidative stress levels and promote the prolifera-
tion and differentiation of osteoblasts. In addition to a 
larger drug loading capacity and enhanced photothermal 

Fig. 6  Incorporated polyoxalate (HPOX) nanoparticle structure and antioxidant capacity. A HPOX is an innovative prodrug polymer that uses HBA 
as its backbone antioxidant and anti-inflammatory properties. HPOX’s medicinal actions come from the release of HBA during the breakdown 
process. B The ability of HPOX nanoparticles to scavenge H2O2 and to suppress the production of ROS in PMA-stimulated macrophages. Copyright 
2013, Elsevier
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conversion ability, HGNPs are also tiny (only 30–60 nm 
in diameter), non-toxic, and spherical in form. The 
antioxidant capacity and biocompatibility of mPEG@
HGNPs-ALA indicated its potential for use in osteopo-
rosis therapy.

The nitrogen-doped carbon dots (N-CDs) have thera-
peutic promise for the treatment of osteoclast-related 
osteolytic disorders [187]. The N-CDs decreased Nox1 
and upregulated Nrf2 to inhibit RANKL-induced ROS 
production. Inhibiting osteoclastogenesis and bone 
resorption with N-CDs in  vivo partially protected mice 
against lipopolysaccharide (LPS)-induced calvarial 
bone degradation and breast cancer-induced tibial bone 
destruction. Photoluminescent carbon dots (PCDs) from 
sour apples cured a mouse calvarial osteolysis model 
induced by ultra-high molecular weight polyethylene 
(UHMWPE) wear particles. PCDs reduced UHMWPE-
induced ROS stress and pro-inflammatory cytokine pro-
duction to inhibit osteoclastogenesis and bone resorption 
in vitro [188].

The osteoporosis cell model examined the ROS-
scavenger nanoceria encapsulated in mesoporous silica 
nanoparticles (Ce@MSNs). Self-regenerating nanoceria 
mimics SOD and CAT activities. The bioactive MSNs and 
nanoceria in Ce@MSNs NPs stimulate bone repair and 
reduce osteoclast activity by releasing osteogenic silica 

and scavenging ROS. The Ce@MSNs showed promise as 
a therapy for osteoporosis, based on their potential thera-
peutic efficacy [189].

The polyglucose-sorbitol-carboxymethyl ether (PSC) 
was employed as the precursor to synthesize Fe2O3@
PSC NPs in a mouse model of iron accumulation (IA)-
related osteoporosis [190]. Nanoscaled Fe2O3 minimized 
the generation of free iron ions. PSC protected bone tis-
sues from the damaging effects caused by ROS genera-
tion induced by free iron ions. Fe2O3@PSC sustainably 
released iron ions instead of releasing a great quantity 
in a short time, which showed promise as a new IA-
related osteoporosis treatment. Iron oxide nanoparticles 
(IONPs) scavenge ROS through the Nrf2-keap1 pathway 
to ameliorate postmenopausal bone loss. Zheng et al. cre-
ated bone targeting IONPs (BTNPs) using alendronate. 
BTNPs targeted bone surfaces and scavenged ROS to 
treat mice with ovariectomy-induced osteoporosis. 
BTNPs outperformed IONPs and bisphosphonates, sug-
gesting a viable clinical use [191].

Polyhydroxyalkanoate-encapsulated CaSi2 nanoparti-
cles (CSN)-loading mesoporous bioactive glass (MBG) 
scaffolds (CSN@PHA-MBG) were designed for releas-
ing H2 in the repair of bone defect of elders [192]. CSN 
greatly improved H2 release capacity for approximately 
one week. Sustained treatment of H2 generally attenuated 

Fig. 7  Pathology of skeletal degenerative diseases induced by ROS. Created with BioRender.com
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oxidative stress and effectively remodelled the senes-
cence-associated secretory phenotype via anti-inflamma-
tory pathways, supporting damaged aged bone repair.

Nahida Rasool et  al. [193] developed thiolated, bioac-
tive mesoporous silica nanoparticles (MSN-SH) for bone 
tissue engineering/osteoporosis. Functional modifica-
tion of the surface thiol groups enhanced the osteogenic 
properties of MSN and confers antioxidant and cell adhe-
sion properties. MSN-SH neutralized ROS and provide 
protection against ROS-induced cellular damage.

Conventional therapies have the limitation of side 
effects and poor penetration into skeletal lesions, while 
NMs could improve drug solubility and stability [194]. 
NMs in circulation may still be non-specifically phago-
cytosed by the liver and spleen, limiting the targeted 
impact, and this is one of the main reasons why biological 
NMs are not widely used in the treatment of OP.

Osteoarthritis
Osteoarthritis (OA) is a progressive joint disease that 
is characterized by the deterioration of articular car-
tilage and oseophyte. OA can affect any joints in the 
body. Numerous studies point to the role of ROS as pri-
mary contributors to the development of OA. The OS 
caused by ROS is capable of oxidizing cartilage, which 
will then disturb its homeostasis, encouraging catabo-
lism through the induction of cell death, and harming 
a variety of components of the joint [195]. ROS operate 
as inflammatory mediators by activating proteoglycans, 
collagen molecules, matrix proteins, and membrane 
proteins directly [196, 197]. These proteins, including 
IL-1β and TNF-α, are directly responsible for the sig-
nificant damage that is caused to the joint tissues of OA 
sufferers. As a result, ROS scavengers have a significant 
amount of untapped potential for the treatment and 
remission of OA.

Surface quinone residues in natural melanin efficiently 
scavenge radicals. Zhong et al. found that dopamine mel-
anin (DM) NPs may scavenge ROS (including ·O2·, ·OH) 
and reactive nitrogen species (RNS), protecting chondro-
cytes from OS, inflammation, and cartilage degeneration. 
DM NPs, which were almost 110  nm, may stay in the 
joint longer than small molecule scavengers, suppress-
ing ROS/RNS and managing OA [198]. MOF-decorated 
mesoporous polydopamine was utilized by Song et  al. 
to develop a dual-drug delivery system, with rapamycin 
(Rap) injected into the mesopores and Bi deposited onto 
the MOF shell. By coupling the collagen II-targeting pep-
tide (WYRGRL) to the nanocarrier, a cartilage-targeting 
dual-drug delivery nanoplatform (RB@MPMW) was 
developed. RB@MPMW effectively eliminated cellular 
ROS through Br and enhances autophagic activity via 
Rap [199].

The capacity of chitosan nanoparticles with glutathione 
(Np-GSH) were evaluated in Rats with OA [200]. GSH 
can directly interact with ROS or act as a cofactor in 
enzymatic processes. Chitosan-based grafts were ideal 
substrates for the proliferation of chondrocytes. The GSH 
contained within nanoparticles (NPs) can be delivered to 
chondrocytes, reducing ROS, increasing GSH levels and 
the activity of GPx, and reducing lipid peroxidation.

Haifeng Liang et  al. encapsulated melatonin in 
poly(lactic-co-glycolic acid) (PLGA), with the type II col-
lagen targeting peptide attached to the surface to prepare 
a nano-delivery system loaded with melatonin(MT@
PLGA-COLBP) [201]. Melatonin enhanced the activity of 
antioxidant enzymes such as GPx and SOD. It repaired 
the damaged mitochondrial function in chondrocytes 
and reduces hydroxyl radicals through its metal chelating 
activity. The MT@PLGA-COLBP formulation achieved 
targeted functional release and sustained release of mela-
tonin within the joint space, improving cartilage matrix 
metabolism and delaying the progression of OA in the 
body.

Exogenous SOD’s poor pharmacokinetics and poor cell 
permeability may explain why native SOD showed no 
therapeutic benefits. O-HTCC-SOD is a nanoparticle-
like compound of cationic functionalized CS and SOD 
[202]. Due to its highly cationic nanoparticle-like feature, 
O-HTCC-SOD may penetrate cells and effectively scav-
enge intracellular ROS. O-HTCC-SOD protected chon-
drocytes longer than native SOD from monoiodoacetate 
(MIA)-induced oxidative damage, which included reduc-
ing mechanical allodynia, inhibiting gross morphological 
and histological cartilage lesions, and increasing anti-
oxidant capacity and anti-inflammatory action. Tao et al. 
used SOD-loaded porous polymersome nanoparticles 
(SOD-NPs) to target mouse synovium [102]. SOD-NPs 
had prolonged mouse joint retention time and minimized 
oxidative damages.

Zhang et al. loaded calcium boride nanosheets (CBN) 
as H2 precursors onto dopamine-modified hydrogel plat-
form (CBN@GelDA hydrogel) for OA treatment. CBN@
GelDA hydrogel released H2 stably and continuously 
under physiological conditions, the release process does 
not affect pH of the microenvironment. CBN@GelDA 
hydrogel scavenged excessive ROS, alleviated oxidative 
stress, reduced inflammation and joint destruction, and 
provided long-lasting relief of OA [203].

Zhao et al. created novel drug-free nanospheres which 
were self-assembled into spherical aggregates from the 
block copolymer of P(DMA-b-SBMA) in aqueous solu-
tion. The nanospheres’ clever construction gave them 
the capacity to withstand physiological stresses, improve 
lubrication, and neutralize harmful ROS. In a rat model 
of temporomandibular joint (TMJ) osteoarthritis, the 
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nanospheres prevented structural damage to the condy-
lar cartilage and subchondral bone, slowed the deteriora-
tion and ageing of the cartilage matrix [204].

MnO2 NPs can function as an artificial nanoenzyme 
to scavenge ROS. The PEG-MnO2 NPs improved chon-
drocyte viability and extracellular matrix preservation 
by reducing inflammation-induced OS in cartilage [63]. 
Chen et  al. synthesized an intelligent hollow MnO2 
(H-MnO2) modified with NH2-PEG-NH2 to target OA 
treatment [205]. H-MnO2 NPs had the ability to effi-
ciently eliminate ROS and greatly alleviate the inflam-
matory response of OA without evident side effects, 
opening up new treatment avenues for those living with 
the condition.

Pei et  al. treated OA in rats using water-soluble poly-
hydroxylated C60 (fullerol) NPs [206]. Fullerol reduced 
OA by preventing synovial membrane inflammation and 
chondrocyte destruction in OA joints.

Ruiming Liang et  al. suggested using nanofibers con-
structed of poly (ε-caprolactone) (PCL) and PCL-grafted 
lignin (PCL-g-lignin) copolymer [207]. PCL tailored 
mechanical properties whereas ligin had inherent and 
persistent antioxidant action. Biocompatible, biodegrad-
able, and antioxidant-rich PCL-lignin nanofibrous mem-
branes treated OA.

Compared to traditional spherical cerium dioxide 
nanoparticles, Urchin-like ceria nanoparticles loaded 
miR-224-5p more effectively delivered miRNA into 
cells and exhibit superior ROS scavenging capabilities. 
This enhanced their ability to suppress inflammatory 
responses and modulate the microenvironment of OA, 
thereby improving the gene therapy approaches for OA 
[208].

Degeneration of the whole joint characterizes OA, 
making intra-articular injection of ROS-responsive nano-
medicine an ideal treatment option, since it allows for 
regulated release and focused therapy without systemic 
side effects. Furthermore, NMs should be developed to 
maximize the retention period in the joint cavity because 
of the quick clearance of the joint cavity.

Sarcopenia
Consistent muscular weakening and atrophy with 
advancing age was termed sarcopenia [209]. An imbal-
ance between ROS/RNS and the enzymatic antioxidant 
defence system is a crucial player in the pathophysi-
ological pathways that lead to sarcopenia. Recent stud-
ies have shown that compared to young/adult rats, 
myofibers from elderly rodents contain higher amounts 
of RONS intracellularly [210]. Muscle mass was nega-
tively impacted by elevated ROS because it facilitated ER 
stress, which caused cell death in muscle cells. Increased 

oxidative damage and mitochondrial malfunction, 
decreased ATP generation, increased protein breakdown, 
and decreased protein synthesis are all potential out-
comes of an overactive redox signaling system in muscle 
fibers [211, 212].

As a nanocarrier for antioxidants, hydroxyapatite is 
a material that is often used in sarcopenia. Biocompat-
ibility and biodegradability make hydroxyapatite (HAP) 
a popular drug delivery system material. The follow-
ing materials increased curcumin loading surface area. 
Curcumin-loaded HAP modified with stearic acid (Cur-
SHAP) released continuously for over 2  weeks, reduc-
ing sarcopenia development or even reversing it [213]. 
Bletilla striata polysaccharide (BSP) coupled with HAP 
was employed by Ya-Jyun Liang et  al. [213]. BSP is an 
efficient ROS scavenger. In the current investigation, 
BSP-HAP administered by intramuscular injection would 
remain in the muscle tissue, followed by a slow absorp-
tion via endocytosis. In the recovery of LPS-induced 
muscle damage, the created BSP-HAP could decrease 
LPS-induced ROS formation and improve tissue healing.

Natural antioxidants such as curcumin rather than 
nanomaterials with ROS scavenging activity are mostly 
used in the antioxidant treatment of sarcopenia. Nev-
ertheless, the effect of antioxidant supplementation on 
muscle performance is still highly debatable.

Skin aging
Skin aging is characterized by fine lines and wrinkles, loss 
of elasticity and volume, sagging, roughness and pallor in 
appearance. The generation of ROS, which causes DNA, 
protein, and lipid damage as well as extracellular matrix 
dis-organization, is a typical hallmark of both intrinsic 
and extrinsic skin aging [214]. Skin has a greater ROS 
burden when compared to other organs, which impacts 
both intrinsic and extrinsic aging [215]. Excessive ROS 
can boost the expression of pro-inflammatory cytokines 
including IL-1, TNF-α, IL-6, and COX-2 to regulate the 
inflammatory response [216, 217], as well as make the 
MMPs/TIMPs ratio imbalanced by activating MMPs 
and decreasing TIMP production, decompressing ECM 
[218]. Meanwhile, ROS can suppress collagen formation 
and accelerate skin aging via regulating the TGF-β/Smad 
signaling pathway [219] (Fig. 8). Antioxidants have been 
demonstrated to dramatically reduce or prevent free rad-
ical damage to the skin.

Antioxidant nanoparticles have attracted a lot of inter-
est in the cosmetics industry as a possible solution to the 
effects of skin aging. Investigations on nanoization of 
conventional medications begun at an early stage, such as 
EGCG, RSV, CoQ10, quercetin.

Nano-transfersomes loaded with EGCG and hyaluronic 
acid (HA) were employed by Avadhani et al. [220]. HA’s 
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anti-aging qualities, which include biocompatibility, par-
ticular viscoelasticity, hydration, and lubrication, make it 
a promising anti-aging agent [221]. Optimized transfer-
somes had far greater skin penetration and EGCG depo-
sition than pure EGCG, which improved cell survival, 
lipid peroxidation, intracellular ROS, and MMP expres-
sion in human keratinocyte cell lines (HaCaT).

SLNs and NLCs can provide intimate contact and pro-
mote medication absorption via the skin. Incorporating 
RSV into SLNs and NLCs [96], encapsulating CoQ10 into 
NLC [100], liposomes (LIPO-Q10) and SLNs (SLN-Q10) 
[94], ultra-small lipid nanoparticles (usNLC-CoQ10) 
[222] has been investigated for topical use. All of the 
above exhibited excellent antioxidant capacity in cells fol-
lowing UVA and UVB irradiation.

A typical dietary flavonoid, quercetin has several physi-
ological benefits including being a powerful antioxidant, 
scavenger of free radicals, and anti-inflammatory [223]. 
Tyrosol-incorporated copolyoxalate (TPOX) NPs were 
synthesized by Kim et al., and they were made up of an 
H2O2-sensitive peroxalate ester incorporating tyro-
sol. Then, quercetin (QTPOX) was included into the 

TPOX NPs. H2O2 may delicately break down TPOX into 
CO2 and H2O. This sensitive quality helps to target and 
release in oxidatively damaged cells. In HaCaT cells, the 
QTPOX NPs demonstrate cytoprotective properties via 
antioxidative and anti-inflammatory actions [224]. Nisar 
et al. created Quercetin-loaded zinc oxide nanoparticles 
(Quercetin@ZnO NPs) in  vitro. ZnO NPs release the 
drug for sunblocking and protecting such as antioxidant, 
anti-inflammatory, and iron-sequestering properties by 
delivering maximum quercetin molecules to the targeted 
site after UVA exposure [225].

The antioxidant capabilities of stable SeNPs stabilized 
with chitosan of varying molecular weights (Mws) (CS-
SeNPs) were investigated. Because of its low toxicity and 
bioavailability, CS could survive pepsin and pancreatin, 
and stabilize the Se system in the digestive enzyme envi-
ronment. In skin-aging mice, all CS-SeNPs penetrated 
tissues and had antioxidant effects [77].

A fullerene-loaded nanoemulsion was employed to 
preserve collagen and prevent skin aging [226]. In the 
HaCaT cell line, Xiao et  al. investigated the antioxidant 
properties of several water-soluble fullerene derivatives. 

Fig. 8  Pathology of skin aging induced by ROS. Created with BioRender.com
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A ROS-scavenging effect against UVB-injuries was dem-
onstrated for PVP/fullerene, CD/fullerene, and hydroxyl 
group-containing fullerene, indicating the likelihood of 
skin aging [227].

After UVA radiation, CeO2 NPs decreased pro-inflam-
matory cytokines, intracellular ROS, senescence-associ-
ated β-galactosidase activity, and JNK activation [228]. 
CeO2 NPs were used to scavenge ROS, protected skin 
against radiation and inflammation, and helped wounded 
healing [229, 230].

Enzyme-mimicking Au-Pt nanocomposites (NCs) were 
produced by Xiong et al. in HaCaT cell lines to scavenge 
cellular ROS caused by UV irradiation [231].

Chiral manganese dioxide nanoparticles with high sen-
sitivity and selectivity for ROS were engineered. MnO2 
NPs eliminated ROS in skin tissues, increased collagen, 
and showed exciting roles in inhibiting oxidative damage 
in skin and preventing skin aging [232].

Redox nanoparticles (RNPN) are nitroxide radical-con-
taining polymers that may efficiently remove ROS. Oral 
RNPN supplementation increased the therapeutic ben-
efits of the core nitroxide radical and decreased UVB-
induced skin aging in an inflammatory skin model. The 
RNPN may protect skin against ROS damage and slow 
aging [233].

Nanotechnology can improve the performance of cos-
metics in a variety of ways, such as by enhancing entrap-
ment efficacy, physical stability and dermal penetration of 
the active ingredient, regulating the release of the active 
ingredient. The majority of these bioactive compounds, 
however, are poorly absorbed by the skin. On the one 
hand, the skin permeability of nanomedicines needs to 
be enhanced, and on the other hand, nanoparticles may 
cross the skin and enter the body circulation, causing 
unintended toxicity and side effects. Nanoparticles may 
cause skin irritation or allergic reactions. It is necessary 
to adjust the size, shape, charge, degradability, and dose 
of the drugs to make them more absorbable, less toxic, 
and less allergenic [234].

Neurodegenerative diseases
Alzheimer’s disease and Parkinson’s disease are the two 
most prevalent neurodegenerative diseases, respectively. 
In terms of mechanisms of OS, there are many com-
monalities between AD and PD. ROS production played 
an important role in Amyloid-beta (Aβ) oxidation, mito-
chondrial dysfunction, upregulation of inflammatory 
factor expression and selective neuronal degeneration 
(Fig. 9).

The existence of the blood–brain barrier (BBB) hin-
ders the identification and treatment of brain illnesses by 
limiting the transit of biologically active chemicals and 
drugs [235]. Drugs were unable to sustain a high enough 

bioavailability to have an impact on the brain paren-
chyma pharmacologically. The unique qualities of NMs, 
including as their tiny size, drug-loading capacity, high 
blood stability, low immunogenicity, high biodegrada-
bility, and the ability to change surface properties, have 
been employed to treat neurodegenerative illnesses [236].

Although NMs can effectively penetrate the BBB to 
reach the brain, they may accumulate in the brain and 
thus cause adverse reactions or toxicity. In addition, the 
long-term stability and metabolic pathways of nanopar-
ticles in the body are not yet fully understood, and there 
may be a risk of long-term accumulation and chronic tox-
icity. NMs may activate the immune system of the human 
body, triggering an inflammatory response and affecting 
the health of the nervous system [237, 238].

Translated with DeepL.com (free version).

Alzheimer’s disease
AD is a neurodegenerative disease characterized by 
gradual cognitive decline and behavioral abnormali-
ties, with common clinical symptoms including pro-
gressive forgetfulness, loss of recognition, loss of 
reading, and loss of speaking. Neurodegenerative ill-
nesses like AD are characterized by OS and neuronal 
death [239]. Accumulation of free radical caused dam-
age and altered expression of antioxidant enzymes are 
hallmarks of AD [240]. Due to reduced production of 
major antioxidant enzymes as CAT, SOD, GPx, and 
GSH reductase, the body is unable to utilize its detoxi-
fication mechanisms effectively [241]. Together, the 
oxidative imbalance, the overexpression of nuclear 
factor kappa-light-chain-enhancer (NF-kB), and the 
release of inflammatory mediators (such as IL-1β, IL-6, 
TNF-α, and TGF-β) create an environment conducive 
to the development of AD [242, 243]. The activation 
of N-methyl-D-aspartate receptors (NMDARs) results 
in ROS production when Aβ accumulates abnormally. 
This in turn led to OS. ROS triggers a vicious loop that 
causes the onset and development of AD by increasing 
the synthesis and aggregation of Aβ and hyperphos-
phorylated Tau. Antioxidant treatments have emerged 
as promising possibilities for treating AD, according to 
preclinical research [244]. Additionally, several types 
of nanoparticles have been utilized in AD investiga-
tions (Table 3).

Due to site-specific delivery, the ability to cross the 
BBB, increased drug solubility, and greater therapeutic 
efficacy, nano-delivery is a preferable alternative. BBB 
penetration favors particles with a lower dimension. 
It is essential to use nanoparticles of a reduced size to 
improve BBB penetration, reduce acute toxicity and 
adverse effects, and increase drug loading capacity.
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Parkinson’s disease
Parkinson’s disease (PD) is a degenerative disorder of 
the central nervous system that slows the mobility of 
the patient. The early manifestations of the disease 
include resting tremor, myotonia, slow movement, dif-
ficulty in starting movements and abnormal posture. In 
PD patients, Farias et  al. [273]discovered elevated lipid 
hydroperoxides (LOOH), MDA levels, and SOD activ-
ity, as well as reduced CAT activity. ROS-mediated OS is 
closely related to PD, mainly because the production of 
large amounts of ROS by activated microglia is accom-
panied by increased sensitivity to ROS and reduced 
scavenging capacity of brain tissue in PD patients [274]. 
Additional pathways involved in PD are neurodegenera-
tion caused by the action of androgen receptors [275], 
enhanced α-synuclein aggregation and formation of oxi-
datively modified forms of α-synuclein [276], degrada-
tion of quinone oxidoreductase 1 [277], attenuation of 
protein DJ-1’s deglycase activity [278], activation of gene 
LRRK2 [279], decreased tetrahydrobiopterin and tyros-
ine hydroxylase (TH) metabolism [280]. Numerous new 
pharmaceutical therapeutics targeting the OS pathway 
have been developed, and they are proved useful in the 
treatment of PD. Here, we discuss the use of ROS-scav-
enging nanotechnology for PD therapy (Table 4).

Nanomaterials have great antioxidant qualities, how-
ever their applications raise certain safety concerns. 
In the neurological system, NMs may cause apoptosis, 
release ROS, modify the production of pro-inflammatory 
cytokines, and affect neurotransmitter expression [281]. 
Protecting the brain’s homeostasis against the effects of 

nanoparticles and their breakdown products is an urgent 
need.

Reproductive aging
Female reproductive aging
The adult hypothalamic-pituitary system, also known as 
the hypothalamic-pituitary-ovarian (HPO) axis, coordi-
nates with the follicles in the ovaries to control menstrual 
cycles and the reproductive lifetime and healthspan. With 
increasing age, follicles are gradually depleted and their 
quality declines, leading to reproductive aging and meno-
pause. This process is reflected in a significant age-related 
increase in the probability of infertility, miscarriage and 
birth defects in the offspring [304]. ROS is considered to 
be responsible for the initiation or development of patho-
logical processes affecting ovarian function [305]. Follicle 
atresia and decreased oocyte quality and quantity may 
result from excessive ROS, which damage DNA, disturb 
protein function and homeostasis, promote ER stress, 
autophagy, and proteasome dysfunction among other 
detrimental effects [306]. Pathological ROS drive ovarian 
aging by apoptosis, mitochondrial dysfunction, inflam-
mation, telomere shortening and other aspects [307–
309]. Related antioxidants, such as MLT, vitamin E, and 
resveratrol, could improve ovarian function and therefore 
have potential clinical applications [310, 311]. Unfortu-
nately, there is a dearth of studies on the impact of nano-
antioxidants on ovarian aging.

Fig. 9  Pathology of neurodegenerative diseases induced by ROS. Created with BioRender.com
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Male reproductive aging
Decrease in sperm quality and a higher chance of birth 
abnormalities and disorders in progeny are signs of 
reproductive aging in males [304]. 15% of couples world-
wide struggle with male infertility, making it an impor-
tant health issue that has to be addressed head-on [312]. 
According to recent research, 25–40% of infertile men 
have high ROS levels in their semen [313, 314]. The 
integrity of sperm DNA is similarly compromised by OS, 
which may have an impact on the ability of embryos to 
grow and the health of their progeny. Male reproductive 
potential may be decreased by age-related OS because 
of deteriorating semen quality, altered endocrine, and 
sexual dysfunction [315]. Patients with elevated levels of 
ROS may benefit from antioxidant treatment [316], and 
it is important to design the reasonable antioxidants for 
male reproductive aging.

The great majority of antioxidants in male reproductive 
aging are nanoparticles with their own ROS scavenging 
activity, and some of these are also being utilized in con-
junction with traditional medicines like MLT to maxi-
mize their capabilities.

MLT is a powerful antioxidant that is capable of cap-
turing free radicals. Synthesized gold (III) MLT (Au3+/
MLT) complexes showed anti-inflammatory and anti-
oxidant properties to protect against testicular injury 
[317]. MLT is an effective formulation for scavenging 
ROS, triggering the production of molecules that pro-
tect sperm from oxidative stress. The combination of 
Au + 3/MLT significantly enhances total antioxidant 
capacity compared to using MLT alone.

By reducing OS, Nanoform Se (NSe) reduced testicu-
lar toxicity and apoptosis cause by BPA or NiSO4 [318, 
319]. NSe was more protective than Se [319].

(FSH)-conjugated SOD-loaded PLGA NPs designed 
by Snow-Lisy et al. targeted testis Sertoli cells to com-
bat male infertility caused by high levels of ROS [320].

Ionizing radiation produces ROS through the radioly-
sis of water in irradiated testicular tissue, which causes 
spermatogenic cell mutation or death, reduced sperm 
quantity and motility, and increased sperm deformity 
rate. Molecular hydrogen (H2) has the potential to be a 
radioprotective agent due to its ability to scavenge ·OH 
selectively. The use of MgH2 nanoparticles for hydrogen 
storage and release have several benefits, including high 
storage capacity, a smooth release rate, and great stabil-
ity. Ma et al. [321] observed that MgH2 reduced MDA 
levels in testis, inhibited ROS formation after irradia-
tion, and removed ·OH. Furthermore, by neutralizing 
hydroxyl free radicals, MgH2 therapy enhanced male 
fertility impairment due to irradiation.

Ce NPs’ potential protective impact against fipronil-
induced testis damage was investigated in a rat model 
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[322]. The Ce NPs mitigated the deleterious effects of 
fipronil on testicular tissue by reducing lipid peroxida-
tion, apoptosis, inflammation, and boosting antioxidant 
activity.

Fullerenol C60(OH)24, a hydroxylated derivative of 
fullerene, is investigated for its NO-scavenging action 
in mesenchymal cells from rat testicles in a separate 
research by Mirkov et al. [323]. C60(OH)24 could scav-
enge ·O2· in xanthine/xanthine oxidase system.

There was promising evidence that antioxidants 
might slow the aging of the male reproductive system. 
However, an imbalance between oxidants and antioxi-
dants, known as reductive stress (RS), can be caused by 
an overabundance of antioxidants. The fertility rate and 
three fundamental seminal indicators (motility, concen-
tration, and morphology) have all been linked to RS’s 
negative consequences [324]. The fertilization process 
was decreased owing to the inhibition of significant 
functional activities of the spermatozoa [325]. There-
fore, precision antioxidant may be the way forward for 
study into the effects of aging on reproduction.

Ocular neurodegenerative disease
Age‑related macular degeneration
Age-related macular degeneration (AMD) is a chronic 
neurodegenerative and progressive disease with a multi-
factorial aetiology that leads to alterations in the macula 
region’s structure [326]. Non-neovascular (‘‘dry’’) AMD 
effects approximately 85–90% of patients, whereas neo-
vascular (‘‘wet’’) AMD affects the residual 10–15% of 
patients. Due to its high oxygen metabolism require-
ments, high unsaturated fatty acid content, the presence 
of photosensitive molecules (retinoids and lipofuscin), 
and protracted exposure to light, the retina is more sus-
ceptible to injury induced by ROS and OS [327]. Oxida-
tive damage is a precursor to the development of AMD 
and is implicated in AMD-related inflammation and 
neovascularization. Key to secondary oxidative injury 
in the retina [328] are disturbances in the regulation of 
OS-related molecular pathways such as autophagy and 
Nrf2 signaling pathways. Given the importance of OS in 
the pathogenesis of AMD, excessive ROS-targeting anti-
oxidant therapies have been proposed as the first-line 
treatment.

In order to better administer medications like poly-
dopamine and lutein, nanomaterials are modified to 
have an enhanced dosage form and permeability. Jiang 
et  al. produced anti-angiogenetic protein-loaded poly-
dopamine NPs for wet AMD [329]. Polydopamine NPs 
reduced angiogenic agent expression by scavenging ROS 
stimulated by external OS. In reaction to OS, the parti-
cles controllably released loaded anti-angiogenic medi-
cines to cure wet AMD. Lutein is commonly used as an Ta
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antioxidant due to its ability to quench singlet oxygen and 
eliminate ROS [330]. However, lutein’s inadequate water 
solubility limits its absorption and effectiveness. Ying Ge 
et al. created a penetratin-modified lutein nanoemulsion 
in-situ gel (P-NE GEL) to cure rat dry AMD produced 
by NaIO3. GEL solution significantly extends the corneal 
retention time of drugs. With the aid of penetratin, P-NE 
is rapidly transported to the posterior segment of the eye 
and distributed in the retinal area. P-NE GEL strongly 
inhibited cell apoptosis and ROS in human retinal epithe-
lial cells (ARPE-19), indicating its potential use in AMD 
therapy [104]. By modulating Nrf2 via the PI3K/AKT/
mTOR signaling pathway, astragaloside-IV (ASIV) may 
reduce OS. Three different sized ASIV lipid nanocapsules 
(ASIV-LNCs), sized at 20, 50, and 90  nm, were loaded 
with a phospholipid complex produced from ASIV [331]. 
LNCs offer reduced toxicity, increased drug loading 
capacity, and enhanced permeability. In a mouse model 
of dry AMD caused by NaIO3, the ultra-small-size LNCs 
(ASIV-LNCs-20) exhibited superior penetration effects, 
which were able to lower ROS generation and the rate of 
cell death.

Due to its tiny particle size, NMs with free radi-
cal scavenging action offers a distinct advantage in 
ocular illnesses. Mitra et  al. developed water-soluble, 
biocompatible, trackable nanoceria formulation gly-
colchitosan-coated ceria nanoparticles (GCCNPs) with 
enhanced antioxidant ability to scavenge intracellu-
lar ROS. In laser-induced AMD, GCCNPs decreased 
ROS-induced pro-angiogenic vascular endothelial 
growth factor (VEGF) expression, cumulative oxida-
tive damage, and endothelial precursor cell recruit-
ment without toxicity [332]. Fullerenol (Fol) decreased 
ROS, normalized GPx activity, and promoted CAT in 
H2O2-induced RPE senescence [333]. Its nanosize per-
mitted intravitreal injection into the retina and RPE 
cells. Yong-Su Kwon et  al. [334] used PEGylated syn-
thetic melanin-like nanoparticles (MNPs) in the RPE 
to restore melanin for AMD therapy. Biocompatible 
MNPs preferentially targeted ROS with significant anti-
oxidant effects. MNPs could also treat AMD pathology 
with a single treatment (Fig. 10).

Absorption rates, medication penetration, active 
solubility, and bioavailability have all been proven to 
enhance with the use of nanomedicine. The absence 
of blood flow at the location of sickness is common in 
the eye since it is a relatively closed organ. The creation 
of a nanocarrier for topical use in the eye is urgently 
required. When designing a dosage, it’s important to 
keep nanomaterial complexity and dose to a minimal. 
The clinical translation of methods for sustained and 
targeted administration of nanoscale medicines to the 

posterior portion of the eye to treat AMD is still an 
area of active research.

Cataract
Cataract is primarily an ARD, with a loss of transpar-
ency in the lens of the eye, manifesting as blurred vision 
or glare. The buildup of primary lipid peroxidation (LPO) 
products (diene conjugates, cetodienes) was character-
istic of the early stages of cataract. The preponderance 
of end LPO luminous products was characteristic of the 
later stages [335]. Cataractogenesis has been linked to 
ROS that cause damage in the lens cell, which may take 
the form of protein oxidation, DNA damage, and/or lipid 
peroxidation [336]. Antioxidants are a potentially effec-
tive strategy for managing cataracts as well as a variety of 
ocular disorders of the aging eye caused by ROS.

Ethylene glycol, ethylene glycol monoacetate, and eth-
ylene glycol diacetate (EGCNPs) coated cerium oxide 
nanoparticles were produced in a work by Hanafy et al. 
Elevated level of reduced GSH to oxidized GSH (GSH/
GSSG) in human lens epithelial cells (HLECs) was a 
result of EGCNPs displacing POD activity [337].

Renal aging
The aging process is associated with a variety of structural 
and functional changes in the kidneys and a decreased 
ability to recover from a kidney injury, both of which 
contribute to long-term renal outcomes: over 60 percent 
of people aged 80 and older are diagnosed with chronic 
kidney disease (CKD) [338, 339]. The loss of renal mass, 
glomerulosclerosis, glomerular basement membrane 
hypertrophy, tubular atrophy, interstitial fibrosis, and 
arteriosclerosis are associated with aging kidneys [340, 
341]. Renal aging and CKD are linked to elevated OS lev-
els [342]. Multiple studies have linked an increase in ROS 
markers to a decline in kidney function beginning in the 
early phases of CKD in adults and children [343, 344]. As 
the disease progresses, OS indicators such as mitochon-
drial superoxide, oxidized LDL, homocysteine, SOD, and 
GSH deficiencies increase in concentration [345, 346]. 
This overall increased oxidative burden may contribute to 
chronic cellular stress, mitochondrial injury, apoptosis, 
and may induce tubular cell injury [347, 348]. Antioxi-
dants are potential anti-aging strategies for the kidneys.

Yuh-Feng Lin et  al. attached anti-kidney injury mol-
ecule-1 antibodies to resveratrol-loaded PLGA nano-
particles (KIM-1-Res NPs). The unique KIM-1-Res NPs 
may accurately control medication release, directly tar-
get damaged kidney cells, limit side effects, and improve 
therapeutic results. Molecular-1-Res NPs decreased cre-
atinine and prevented tubulointerstitial damage in CKD 
mice [349].
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In order to protect renal cells from oxidative dam-
age, Fong-Yu Cheng et  al. [350] investigated whether 
thapsigargin (TG)-encapsulated PLGA nanoparticles 
(TG-PLGA NPs) might promote autophagy. Nrf2 and 
forkhead box, class O (FoxO1) were activated by the 
TG NPs to rescue HK-2 cells from OS-induced cell 
death. Through the production of ER stress and its 
downstream pathways, the antibody-conjugated TG 
NPs reduced kidney dysfunction and damage.

As a result of its ability to shield thiol-containing pro-
teins (antioxidant enzymes), zinc has been touted as 
a pro-antioxidant agent [351]. In order to tackle CKD 
[352], researchers employed a combination of spirono-
lactone (SPL) and zinc oxide nanoparticles (ZnO-NPs). 
The antioxidant and anti-inflammatory effects of ZnO-
NPs significantly improved the therapeutic efficacy of 
SPL in the treatment of CKD.

Although ROS-scavenging nanoparticles have prom-
ising anti-aging effects, they may potentially trigger OS 
and mitochondrial dysfunction in the kidneys if used in 
excess. Several fundings have shown that multi-walled 
carbon nanotubes (MWCNTs) [353], AuNPs [354], Sil-
ver nanoparticles (AgNPs) [355], copper nanoparticles 
(CuNPs) [356], Pt NPs [357] could induce renal injury. 
The trade-off between biological toxicity and therapeu-
tic efficacy of nanoparticles remains to be explored in 
more depth in future studies. NMs may accumulate 
in the kidneys due to their small size and unique sur-
face properties. The extent of bioaccumulation due 
to repeated dosage over long periods of time is still 
unknown [358] [359].

Clinical trials of ROS‑scavenging nanotechnology 
in treatment of ARD
Even though ROS-scavenging nanotechnology has been 
the subject for the treatment of ARD, only a handful of 
these treatments have advanced to the stage of clinical 
trials (Table  5). The current clinical trial studies about 
ROS-scavenging nanotechnology suffer from scarcity of 
trial conduct, small sample size, heterogeneity of study 
population, diversity of antioxidants, and absence of uni-
form clinical endpoint indicators. Further studies com-
paring ROS-scavenging nanotechnology with traditional 
antioxidants or combinations of them are even more 
scarce. The efficacy and safety of many antioxidants are 
currently unknown. and more research, especially clinical 
trials, are needed to further validate them. The creation, 
translation, clinical studies, and even the drive toward 
actual patient usage of nanotechnology still have a great 
deal of unfinished business.

Conclusions and future perspective
In this review, we provided an introduction to ROS-scav-
enging nanomaterials, discussed their use in the study 
of aging, and outlined directions for future research. 
There are significant obstacles to the clinical transla-
tion of ROS-scavenging nanotechnology in aging and 
ARD, despite the encouraging results from preclinical 
investigations and clinical trials. Nanomaterials that can 
scavenge ROS have the potential to outperform current 
antioxidant treatments, increasing human longevity and 
enhancing quality of life. However, there are still issues 
to be resolved, such as the effectiveness of nanoparticles 

Fig. 10  Illustrations and characterizations of MNP schematics. A Schematic of the MNP synthesis and characterization. B TEM, hydrodynamic 
dimensions, and Zeta-potential of Bare-MNPs and MNPs. C MNPs’ ROS-scavenging activity in ARPE19 cells. Copyright 2022, American Chemical 
Society
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for targeted delivery, the safety of nanomaterials, and a 
dynamic monitoring system for antioxidant nanomedi-
cine. The root cause, location, lesion micro-environment, 
and gene expression/signaling pathway modifications of 
each illness are unique. Nanomaterials should be devel-
oped with these features in mind.

Overall, current enhancements in nanomedicine pri-
marily focus on:

Precision targeting The development of nanomedi-
cines with targeted capabilities ensures the concentration 
of drugs at lesion sites, thereby reducing the impact on 
healthy tissue. This strategy significantly enhances treat-
ment precision. Existing antioxidant-based treatments 
lack specificity for dysfunctional cells, tissues, and orga-
nelles. Antioxidants are frequently not designed to act 
selectively on senescent cells, which creates uncertainty 
regarding their actual efficacy and biosafety. In addition, 
certain biological barriers can impede the accumulation 
of nanomaterials at disease sites and reduce the efficacy of 
therapies. Nanodrug delivery may be severely hampered 
by the non-specific absorption of nanodrugs by healthy 
organs, one of the common biological barriers. Several 
strategies have been proposed to combat non-specific 
absorption by extending the half-life of nanodrugs in cir-
culation. Clinical contexts have utilized PEGylated NP 
strategies that inhibit clearance by the reticuloendothelial 
system (RES) or mononuclear phagocyte system (MPS) 
[102, 111]. Advancements in nanoparticle surface func-
tionalization, such as pH, redox, and light responsive-
ness. Targeting ligands is also emerging as a promising 
avenue of research. Nanodrug surface modification of 
targeting ligands can identify overexpressed receptors in 
pathological tissues and facilitate site-specific nanodrug 
delivery [366]. Many targeting ligands such as aptam-
ers, nanoantibodies, small molecules and peptides [367], 
have been widely used for tumor-targeting nanodrugs. 
While non-tumor disorders are the principal indication 
for ROS-eliminating nanodrugs, identifying appropri-
ate ligands will be a fruitful field of study. Drug distribu-
tion is greatly hampered by the BBB, a critical barrier in 
a number of neurological illnesses. The BBB has been 
approached using a variety of approaches, including 
chemical alteration of medicines and prodrugs, local dis-
tribution mediated by NPs, disruption of the BBB, and 
different nanocarriers that can cross the BBB [212, 368].

Biodegradable materials There’s a concentrated effort 
to use natural, biocompatible, and easily biodegradable 
materials for creating nanoparticles. This approach aims 
to minimize toxicity and the risk of bioaccumulation, 
ensuring that these nanoparticles can be safely decom-
posed and cleared from the body post drug release.

Optimized nanoparticle design Fine-tuning the size, 
charge, shape, solubility, and surface properties of 

nanoparticles can improve their distribution and excre-
tion in targeted tissues, reducing systemic toxicity. For 
example, smaller nanoparticles in the reproductive sys-
tem have been linked to reduced sperm count and vital-
ity, potentially leading to damage in cumulus cells and 
hindering egg maturation [369]. It’s observed that cati-
onic nanoparticles typically exhibit greater toxicity than 
their neutral or anionic counterparts. Surface modifica-
tions of nanoparticles, such as glycosylation, acetylation, 
PEGylation, or peptide modification, can enhance bio-
compatibility, decreasing immune responses and toxicity. 
Furthermore, the synergistic use of adjuvants, like per-
meation enhancers in the skin, can temporarily alter the 
skin’s barrier function to boost the transdermal absorp-
tion of nanomedicine. For instance, in cardiovascular 
applications, stimulus-responsive nanoparticles that 
react to changes within the blood vessels (such as shear 
stress) or to external stimuli, like magnetic and temper-
ature-sensitive nanoparticles, present innovative thera-
peutic possibilities [370].

Controlled release systems High reactivity, poor storage 
ability, and limited bioavailability during in  vivo distri-
bution characterize antioxidants. Because encapsulation 
techniques rely mostly on the passive release or diffusion 
of antioxidant chemicals, they can’t be used for sustained 
and regulated treatment. Antioxidants in nanomaterials 
that escape before they reach the site of action may have 
diminished therapeutic efficacy or even harmful side 
effects. Enhanced hydrophobic contacts, electrostatic 
interactions, van der Waals forces, π—π stacking, hydro-
gen bonding, and covalent bonding are only some of the 
common interactions used to stabilize nanomaterials for 
drug delivery platforms [371, 372]. Due to its removal 
in an acidic intercellular environment, MnO2 and ZnO 
could be utilized as gatekeepers to efficiently restrict 
medication leakage. The release of antioxidants may need 
to be balanced with the biodegradability of the biomate-
rial. Many loaded antioxidant components are released 
too quickly, in an incomplete form, or are unstable after 
release [373]. Nanotechnology-based controlled release 
systems represent a future-worthy area of development, 
which enable precise drug delivery, improved bioavaila-
bility, targeted therapy with minimal side effects, and the 
capability for simultaneous multi-drug delivery.

Safety assessment There is also worry over the toxicity 
caused by ROS that are created by nanomaterials [374]. 
In particular, metal nanoparticles can affect the expres-
sion of neurotransmitters [281], trigger inflammatory 
responses, and cause OS. Small nanoparticles gener-
ate more ROS [375], because they have a larger specific 
surface area and greater surface reactivity than larger 
nanomaterials. Nanomaterials’ ability to generate ROS 
is influenced by a number of physical and chemical 
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characteristics. Too much ROS can be produced if the 
Fenton reaction speeds up (as it could if the concentra-
tion of Cu2+ and Cu+ were both raised). By generating 
oxygen radicals and causing the oxidation and cross-link-
ing of protein thiol groups necessary for cell viability, Se 
in excess leads to apoptosis [376]. Intensify research into 
the safety of nanomedicines, encompassing systematic 
evaluations of their biodistribution, metabolic pathways, 
long-term stability, and potential toxicity within the body.

The majority of antioxidant clinical trials have been 
conducted on patients with established pathology. How-
ever, once senescent cells manifest, antioxidants are 
unable to reverse their condition. In our summary of 
above studies, nowadays research concentrate more on 
synchronous intervention or post-modelling treatment. 
Prevention of disease may be more realistic than cure. 
On the individual oxidative status, the interaction of mul-
tiple compounds from diet or supplements, the optimal 
type of antioxidant, exact dosage, treatment intervals, 
and total duration of therapy, there are numerous unan-
swered questions. ROS-based nanomaterials should be 
combined with other therapeutic methods for improved 
outcomes. The production or elimination of intracellular 
ROS is dynamic in space and time when nanomaterials 

are introduced [377]. The development of techniques to 
monitor and identify the capabilities of particular ROS 
in real time is also crucial and essential. It’s best to keep 
things as straightforward as possible when designing 
nanomaterials, as more intricate structural and func-
tional designs make manufacturing in bulk more chal-
lenging and less reliable.
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The novel bioavailable Cur-
cumin (Cureit)

Sarcopenia CTRI/2018/05/014176 Not available Cureit is effective in the treat-
ment of sarcopenia due 
to its anti-inflammatory 
properties, enhanced hand 
grip strength, antifatigue 
properties, and muscle 
protein control

30 [360]

Nanoparticle Gel from Phyl-
lanthus amarus (PP)

Osteoarthritis AMSEC-60EX-019 Not available The anti-inflammatory 
and pain-relieving properties 
of PP may help with knee 
discomfort

30 [361]

Curcumin nanomicelle Asthenoteratospermia IRCT2016072519669N2 2–3 Asthenoteratospermia 
treatment with curcumin 
nanomicelles may enhance 
sperm quality

60 [362]

Oligosaccharide nano-
medicine of alginate sodium 
(ONAS)

Osteoporosis Not available Not available ONAS improved compli-
cation rates, fusion rates, 
and Japanese Orthopaedic 
Association ratings

96 [363]

hyper-harmonized fullerene 
water complex

Skin aging Not available Not available Products enabled faster 
regeneration of collagen 
and prompt skin reaction 
to the negative environmen-
tal influences

38 [364]

nano-curcumin T2DM IRCT20130811014330N4 3 Nano-curcumin might 
prevent AS progression 
and subsequent cardio-
vascular events in diabetic 
cardiac patients

64 [365]
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