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Abstract

to display EDIII moiety of DENV on the surface.

immunofluorescence and virus-neutralization assays.

dengue.

Background: Dengue is a global public health problem for which no drug or vaccine is available. Currently, there is
increasing interest in developing non-replicating dengue vaccines based on a discrete antigenic domain of the
major structural protein of dengue viruses (DENVs), known as envelope domain IIl (EDIII). The use of bio-
nanoparticles consisting of recombinant viral structural polypeptides, better known as virus-like particles (VLPs), has
emerged as a potential platform technology for vaccine development. This work explores the feasibility of
developing nanoparticles based on E. coli-expressed recombinant Hepatitis B virus core antigen (HBcAg) designed

Findings: We designed a synthetic gene construct encoding HBcAg containing an EDIIl insert in its c/e1 loop. The
fusion antigen HBcAg-EDIII-2 was expressed in E. coli, purified to near homogeneity using Ni*? affinity
chromatography and demonstrated to assemble into discrete 35-40 nm VLPs by electron microscopy. Competitive
ELISA analyses showed that the EDIII-2 moieties of the VLPs are accessible to anti-EDIII-2-specific monoclonal and
polyclonal antibodies, suggesting that they are surface-displayed. The VLPs were highly immunogenic eliciting high
titer anti-EDIII-2 antibodies that were able to recognize, bind and neutralize infectious DENV based on ELISA,

Conclusion: This work demonstrates that HBcAg-derived nanoparticles can serve as a useful platform for the
display of DENV EDIII. The EDIII-displaying nanoparticles may have potential applications in diagnostics/vaccines for

Findings

Dengue is a mosquito-borne viral disease prevalent in
more than a hundred tropical and sub-tropical countries
placing about 2.5 billion of the global population at risk,
causing 50—100 million infections and ~12,500 deaths
each year [1]. There are four serotypes of dengue viruses
(DENV-1, -2, -3 and -4), belonging to the family Flavi-
viridae [2], each of which can cause dengue disease [1].
The tremendous challenges being faced in the develop-
ment of live viral dengue vaccines [3] has spurred a keen
interest in new generation non-replicating subunit vac-
cines [3,4]. In this context, a discrete domain of the viral
envelope protein has been identified as a potential
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subunit vaccine candidate [3-5]. This domain known as
envelope domain III (EDIII), is exposed and accessible
on the virion surface [6], contains multiple type- and
subtype-specific neutralizing epitopes [7] and is impli-
cated in host receptor binding [8].

One way to augment the vaccine potential of EDIII
would be to display it in multiple copies on the surface
of a nanoparticle carrier. Naturally occurring bio-
nanomaterials, by virtue of their biocompatibility and
biodegradability, are emerging as preferred platforms for
biomedical applications [9]. Viruses are naturally occur-
ring nanoparticles whose particulate nature with repeti-
tive coat protein architecture and pathogen associated
molecular patterns make them a potentially valuable
platform for vaccine development. A subclass of viral
nanoparticles can be generated in heterologous expres-
sion systems exploiting the propensity of several
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recombinant viral coat proteins to self-assemble. These
genome-free viral nanoparticles which eliminate the in-
fectious biohazard inherent in the naturally occurring
viral nanoparticles are more popularly known as virus-
like particles (VLPs) [9,10]. The 183 amino acid (aa) resi-
due Hepatitis B virus core antigen (HBcAg) which can
assemble into VLPs is a well-documented carrier of for-
eign antigens from several different pathogens [11] and
HBcAg-based VLP vaccine candidates for malaria and
influenza are being evaluated in clinical trials [12,13]. Of
relevance to our study is the reported capacity of HBcAg
to accommodate foreign inserts (in the size range of
100-260 aa residues) in its surface-exposed c/el loop,
with retention of its VLP-forming ability. This loop
which contains the major B-cell epitopes ‘¢’ and ‘el is
also known as the major immunodominant region of the
HBcAg VLPs [11]. Optimal immunogenicity of the for-
eign insert is ensured by the concomitant removal of
these major HBcAg immunodominant epitopes. Interest-
ingly, many of these chimeric VLPs have been produced
using E. coli expression hosts [14-20]. In this study, we
report the design, creation and characterization of
chimeric nanoparticles containing DENV-2 EDIIL
(herein indicated as EDIII-2) inserted into the c/el loop
of HBcAg. Further we show that these chimeric VLPs
display EDIII-2 on the surface and elicit antibodies spe-
cific to DENV-2.

The chimeric HBcAg-EDIII-2 antigen was designed by
replacing aa residues 76-80 in the c/el loop of a C-
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terminally truncated HBcAg molecule (lacking aa residues
166 to 183) with the 104 aa residue EDIII-2. We intro-
duced a spacer (GSGDEGG) between the C-terminus of
the EDIII-2 insert and aa 81 of HBcAg to minimize any
disruption of particle assembly through potential interac-
tions between [3-sheet forming residues of EDIII-2 and aa
80-90 of HBcAg [21]. To aid in purification the chimeric
antigen design included an N-terminal 6x His tag linked
through a pentaglycyl spacer to the N-terminal end of
HBcAg. A synthetic gene, HBcAg-EDIII-2, encoding this
chimeric fusion antigen (GenBank accession # JQ729976),
codon-optimized for E. coli expression, was inserted into
an IPTG-inducible prokaryotic expression vector
(Figure 1A and Additional file 1: Figure S1). E. coli trans-
formed with this plasmid, expressed the fusion antigen
upon induction, (Figure 1B). The identity of this induced
protein band was confirmed using antibodies specific to
each of the two fusion partners as well as to the affinity
tag by immunoblotting analyses (Figure 1C).

A localization analysis of the induced cell lysate
revealed the fusion antigen to be associated exclusively
with the insoluble fraction (Figure 2A). This is consistent
with the behavior of a multitude of heterologous pro-
teins over-expressed in E. coli. Attempts to obtain the
fusion antigen in the soluble phase by performing the
IPTG induction at lower temperatures failed. While in-
duction at 16 °C did not result in discernible expression
of the recombinant antigen, at 25 °C it was barely dis-
cernible. Expression was evident at higher induction
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Figure 1 Design and expression of HBcAg-EDIII-2 antigen in E. coli. (A) A map of the HBcAg-EDIII-2 expression vector. The synthetic HBcAg-
EDIII-2 gene is inserted under the control of the phage T7 promoter (pT7) in pET29. The organization of different segments of this fusion gene is
indicated in colour as follows. The HBcAg- and EDIII-2-encoding regions are shown in red and blue, respectively. The 6x His tag-encoding
sequences at the 5'end is shown in black. The two linker-encoding sequences, the first following the 6x His tag and the second after the EDIII-2
encoding sequences, are shown in grey. Other abbreviations are as follows. Lac I Lac repressor gene; Kan": Kanamycin marker; Ori: Replication
origin sequences. (B) SDS-PAGE analysis of recombinant HBcAg-EDIII-2 expression. This panel displays the Coomassie-stained polypeptide profiles
of lysates prepared from un-induced (U) and induced (1) E. coli cells harboring the plasmid shown in A. Pre-stained protein molecular weight
markers were run in lane ‘M". Their sizes (in kDa) are shown at the left of the panel. The arrow on the right indicates the position of the
recombinant HBcAg-EDIII-2 protein. (C) Immunoblot analyses of recombinant protein expression. Aliquots of un-induced and induced cell lysates
(described in panel ‘B') were electrophoresced, electroblotted onto nitrocellulose membranes and probed with anti-EDIIl mAb 24A12 (lane 2),
penta His mAb (lane 3), or anti-HBcAg mAb ab8638 (lane 4). An aliquot of the un-induced cell lysate was probed with mAb 24A12 (lane 1). Pre-
stained protein size markers were run in lanes marked ‘M. Their sizes (in kDa) are indicated to the left of the first blot. The arrow to the right
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Figure 2 Affinity purification of the recombinant HBcAg-EDIII-2 protein under denaturing conditions. (A) Western blot analysis of
localization of HBcAg-EDIII-2 expression. Induced cells were sonicated and centrifuged. The resultant supernatant (lane 1) and pellet (lane 2)
fractions were boiled in Laemmli loading buffer, electrophoresced under denaturing conditions and subjected to immunoblot analysis using
mAb24A12 to identify the recombinant HBcAg-EDII-2 protein. (B) Ni**-affinity purification of HBcAg-EDII-2 from induced E. coli cells. The
insoluble pellet obtained after sonication of induced cells was purified using Ni**-Sepharose under denaturing conditions. The solid curve
represents the chromatographic profile obtained by measurement of absorbance at 280 nm. The two peaks discernible in the elution profile are
numbered 1 and 2. The dotted curve represents the imidazole step-gradient employed for elution. (C) SDS-PAGE analysis of fractions
corresponding to peaks 1 (lanes 1 & 2) and 2 (lanes 3 & 4) shown in panel ‘B'. Low molecular weight protein markers were run in lane ‘M’; their
sizes (in kDa) are indicated to the left of the panel. The arrow at the right of the panels A and C indicates the position of the HBcAg-EDIII-2

temperatures (Additional file 1: Figure S2), but the
expressed protein tended to be associated with the insol-
uble fraction. Consequently, we purified the protein
from induced cells under denaturing conditions
(Figure 2B). An imidazole step-gradient elution resulted
in the emergence of two protein peaks, 1 and 2. Interest-
ingly, an SDS-PAGE analysis of the two peaks revealed
them to contain a single polypeptide co-migrating with
the ~30 kDa low molecular weight marker. This mobility
is consistent with the predicted size (~31 kDa) of the
HBcAg-EDIII-2 antigen. As both peaks in Figure 2B
appeared to be similar (Figure 2C), we pooled the two

and dialyzed the material (0.3 mg/ml) against 25 mM so-
dium bicarbonate buffer, pH 9.2. We could recover
~95% of the protein after dialysis. Analysis of an aliquot
of this by electron microscopy revealed the presence of
discrete VLPs of ~35-40 nm (Figure 3A). Interestingly,
these were quite similar to purified, E. coli-expressed
VLPs (Figure 3B). It is noteworthy that the HBcAg-
EDIII-2 protein had been purified under highly denatur-
ing conditions. Yet, the dialyzed protein could be
observed to be organized into VLPs. This underscores
the fact that inherent propensity of HBcAg to self-
assemble into VLPs is not compromised by the insertion

Figure 3 Characterization of the purified HBcAg-EDIII-2 antigen. (A) The panel depicts VLPs formed by purified HBcAg-EDIII-2 protein
(expressed in P.pastoris). Peaks 1 and 2 (shown in Figure 2B) were pooled, dialyzed, stained with 1% uranyl acetate and visualized under the
electron microscope. (B) Electron microscopic visualization of the purified HBcAg carrier (expressed in E. coli). (C) Evaluation of the immunogenicity
of the HBcAg-EDIII-2 antigen by ELISA. Antisera from mice immunized with the fusion antigen (solid red circles) and its precursors (HBcAg: empty
black circles; EDIII-2: solid blue diamonds) were analyzed in an ELISA using recombinant EDIII-2 antigen (produced using P. pastoris) as the

coating antigen.
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Figure 4 Evaluation of antibodies elicited by HBcAg-EDIII-2 fusion antigen by indirect immunofluorescence assay. Sera from mice that
were mock-immunized (panel a), and immunized with HBcAg (panel b), EDIII-2 (panel ¢) or HBcAg-EDII-2 (panel d) antigens were used as the
primary antibody to pick up DENV-2 in infected BHK-21 cells, in conjunction with an anti-mouse IgG-FITC conjugate.

of EDIII-2 into its c/el loop. Starting from a liter of
induced E. coli culture we obtained ~7 mg of HBcAg-
EDIII-2 VLPs (Additional file 1: Table S1).

Next, we examined if these VLPs display the EDIII-2
to the immune system and induce specific antibodies.
To this end, we immunized Balb/C mice with these
VLPs and tested the immune sera for anti-EDIII-2 anti-
bodies in an indirect ELISA using purified EDIII-2 [22]
as the coating antigen. In parallel, we also tested sera
from mice immunized with purified EDIII-2 and HBcAg
antigens. The data in Figure 3C reveal that the fusion
antigen does indeed elicit high titers of anti-EDIII-2
antibodies, lending support to the notion that the
chimeric VLPs do indeed facilitate display of EDIII-2 ef-
ficiently to the immune system. However, the anti-
EDIII-2 antibody titers elicited by the fusion antigen
appeared to be slightly but consistently lower than those
elicited by the EDIII-2 antigen. This we believe could be
a reflection of the ~3 fold higher concentration of EDIII-
2 antigen compared to the HBcAg-EDIII-2 fusion anti-
gen, per immunization dose, as the latter is ~3 times lar-
ger in size compared to the former. This leads to the
suggestion that the anti-EDIII-2 antibody titers elicited
by the two antigens may indeed be quite comparable.
The next question we addressed was, would these

antibodies also recognize and bind to infectious DENV-2.
For this, we infected BHK cells with DENV-2 and probed
them with anti-HBcAg-EDIII-2 antiserum, in conjunction
with a secondary antibody FITC conjugate. The indirect
immunofluorescence data in Figure 4 show that the anti-
bodies elicited by the fusion antigen were as good as those
elicited by EDIII-2, in picking up DENV-2 in infected
BHK cells. We next performed a virus neutralization assay
to determine the titers of DENV-2 virus-neutralizing anti-
body titers in these antisera using plaque reduction
neutralization test (PRNT) as described previously [23].
The PRNTSj, titers elicited by EDIII-2 and the HBcAg-
EDIII-2 fusion antigens were, respectively, 10 and 35.

The above data suggest that the fusion antigen VLPs
display the EDIII-2 moiety as expected. Then, it must be
accessible to antigen combining sites on anti-EDIII
mAbs and polyclonal antibodies. We tested this using a
competitive ELISA approach, the results of which are
shown in Figure 5. In this experiment we used three dif-
ferent antibodies, an EDIII-specific mAb 24A12 [22], a
murine polyclonal antiserum obtained by immunization
with a chimeric antigen containing the EDIIIs of all 4
DENVs linked in a tandem array [24], and the murine
polyclonal antiserum raised using the HBcAg-EDIII-2
antigen. Remarkably, in all three cases, we observed that
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Figure 5 Competitive ELISA. Anti-EDIIl mAb24A12 (panel A), anti-EDIII-T antiserum (panel B) and anti-HBcAg-EDIII-2 antiserum (panel C) were
separately pre-incubated with varying concentrations of purified HBcAg (green curves) and HBcAg-EDIII-2 (red curves) VLPs, and analyzed for

residual anti-EDIII-2 antibodies using purified P. pastoris-expressed EDIII-2 antigen as the coating antigen. ELISA reactivity in the absence of any
added protein in the pre-incubation step was taken to represent 100%. The regression equations for the HBcAg-EDIII-2 competition assays (red
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pre-incubation of antibodies with the HBcAg-EDIII-2
antigen, but not with the HBcAg antigen (lacking EDIII-2),
resulted in a dose-dependent depletion of antigen-
combining sites available to bind EDIII-2 antigen coating
the microtiter wells. These observations strongly support
the notion that the chimeric VLPs do display the EDIII-2
moiety on the surface in a manner that is compatible with
recognizing and binding to specific anti-EDIII-2 antibodies.

In conclusion, this work has demonstrated the feasibil-
ity of using an E. coli expression system to produce
chimeric nanoparticles using a fusion antigen compris-
ing of the HBcAg polypeptide with EDIII-2 inserted into
its surface-exposed c/el loop. It has shown further that
the EDIII-2 moiety is displayed on the surface of the
chimeric nanoparticle and is able to induce the produc-
tion of specific antibodies capable of binding and neu-
tralizing the infectivity of DENV-2. This work provides
the basis for us to envisage next generation HBcAg-
derived mosaic nanoparticles that display the EDIII
domains of not one, but all four DENV serotypes. Such
nanoparticles could have potentially interesting and pos-
sibly useful diagnostic and vaccine potential.

Additional file

Additional file 1: The file is organized into 3 sections. Section S1
describes essential Methods. Section S2 provides supplementary figures
pertaining to the fusion antigen design and sequence (Figure S1) and
the effect of induction temperature on HBcAg-EDIII-2 expression
(Figure S2). Section S3 provides a summary of HBcAg-EDIII-2 purification
(Table S1).
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