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Abstract 

Erythropoietin (EPO), a glycoprotein hormone of ∼34 kDa, is an important hematopoietic growth factor, mainly pro-
duced in the kidney and controls the number of red blood cells circulating in the blood stream. Sensitive and rapid 
recombinant human EPO (rHuEPO) detection tools that improve on the current laborious EPO detection techniques 
are in high demand for both clinical and sports industry. A sensitive aptamer-functionalized biosensor (aptasensor) 
has been developed by controlled growth of gold nanostructures (AuNS) over a gold substrate (pAu/AuNS). The 
aptasensor selectively binds to rHuEPO and, therefore, was used to extract and detect the drug from horse plasma 
by surface enhanced Raman spectroscopy (SERS). Due to the nanogap separation between the nanostructures, the 
high population and distribution of hot spots on the pAu/AuNS substrate surface, strong signal enhancement was 
acquired. By using wide area illumination (WAI) setting for the Raman detection, a low RSD of 4.92% over 150 SERS 
measurements was achieved. The significant reproducibility of the new biosensor addresses the serious problem of 
SERS signal inconsistency that hampers the use of the technique in the field. The WAI setting is compatible with hand-
held Raman devices. Therefore, the new aptasensor can be used for the selective extraction of rHuEPO from biological 
fluids and subsequently screened with handheld Raman spectrometer for SERS based in-field protein detection.
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Background
Erythropoietin (EPO), a glycoprotein hormone of ∼ 34 kDa, 
is an important hematopoietic growth factor, mainly 
produced in the kidney and controls the number of red 
blood cells circulating in the blood stream [1]. After the 
establishment of human EPO gene sequence [2], recom-
binant human EPO (rHuEPO), a structural and bio-
active analogue of human EPO, has been produced as a 
pharmaceutical to treat patients suffering from anaemia 
symptoms associated with various disorders such as 
cancer [3]. rHuEPO has also been used by athletes as a 
doping agent in endurance sports to enhance their per-
formance [4]. This prompted World Anti-Doping Agency 

(WADA) to ban the use of the drug in sports activities 
[1]. In addition to its chief function in promoting eryth-
ropoiesis, it was recently indicated that EPO levels in 
cancer patients, especially when receiving chemother-
apy, may significantly affect the growth and progression 
of malignant tumours [5, 6]. Thus, sensitive and rapid 
rHuEPO detection tools are in high demand for both 
clinical and sports industry [7].

In recent years, SERS has emerged as an ultra-sensitive 
analytical tool [8–10]. The two important features for 
real world applications of SERS are the homogeneity of 
the SERS substrate and selectivity towards target [11]. 
Vast numbers of SERS active surfaces comprising vari-
ous roughened metallic surfaces and noble metal nano-
structures have been produced. However, the majority 
of surfaces failed to produce a homogeneous SERS sig-
nal. Conversely, very few substrates which are promis-
ing to deliver homogeneous and reproducible signal are 
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expensive [12]. Therefore, there is a high demand for 
cheap, homogeneous and reproducible SERS substrates. 
In principle, the basic requirement for a homogeneous 
and sensitive SERS substrate is defect-free arrangement 
of metal nanoparticles or nanostructures within nanom-
eter scale inter-particle distance [13].

Electrodeposition of metal nanostructures is one of 
the simple, cost effective and efficient approaches that 
realize the defect-free packing of nanostructures over a 
wide area [14]. To enhance the selectivity within SERS, 
recognition molecules that specifically bind to targets 
can be immobilized on the SERS substrate. However, the 
size and length of the recognition molecule should not 
be very large otherwise the SERS effect may completely 
diminish due to the long distance between the captured 
protein and the plasmonic surface. In other words, the 
binding receptor should not be far away from the surface 
as SERS signal exponentially decreases with respect to 
the increase in distance between the surface and analyte.

Antibodies are frequently used as recognition molecules 
for detecting proteins. However, antibodies usually have 
large size that constitutes a serious hurdle to the label-free 
SERS detection of proteins [7]. Aptamers are now widely 
emerging as better choice over antibodies [15]. Aptamers 
are of much smaller size than antibodies and also well-
known for their high selectivity, binding affinity, easy and 
quick production, stability and cost-effectiveness [16]. 
Moreover, aptamers can bend and orient themselves close 
to the surface of the SERS substrate after binding with the 
target protein [17]. This orientation would lead to high 
intensity SERS signal due to short distance between the 
captured target and SERS surface. Thus, this article pre-
sents a homogeneous and sensitive aptamer-functional-
ized nanosensor for the rapid reproducible and label-free 
SERS detection of rHuEPO in biological fluids.

Methods
Nanostructured SERS substrate (pAu/AuNS) was pre-
pared by potentiostatic deposition of AuNS over mirror 
polished Au surface [14] (see Additional file 1).

Results and discussion
Characterization of SERS substrate
We optimized gold chloride concentration, electrolyte, 
applied potential and time to have a closely packed sin-
gle layer of AuNS within nanometer scale inter-particle 
distance. Figure 1 shows the SEM pictures of pAu/AuNS 
surface. The SEM image under wider magnification (Fig-
ure 1a) illustrates that the deposition of AuNS is virtually 
uniform over the entire surface. Even at a 100 micron field 
of view, the particle coverage was uniform and defect free 
(Additional file  1: Figure S1). Similar SEM images were 
obtained over the entire 8 mm diameter pAu/AuNS disc 

surface which clearly reveals that the electrodeposition 
method produced homogeneous AuNS over the entire 
surface. Although the sizes of AuNS ranged between 10 
and 100  nm (Figure  1b), the uniform close packing of 
AuNS in single layer lead to homogeneous SERS signal 
for a focused micron-scale laser spot [11] (vide infra). 
Polished Au was chosen as the underlying support since 
it produces more AuNS particle initiation spots during 
electrodeposition in contrast to glassy carbon or indium 
tin oxide surfaces [14]. As a result, high density of small-
sized and closely packed AuNS was produced and led 
to enormous SERS enhancement. Furthermore, a pos-
sible coupling between the propagating surface plasmon 
polariton (SPP) of the underlying polished Au surface 
and surface plasmon resonance (SPR) of the AuNS [14, 
18] may lead to additional SERS enhancement.

Reproducibility of SERS spectra
In order to test the homogeneity of the substrate and the 
reproducibility of the SERS signal from various locations 
on the sensor, we used 2-quinolinethiol (2-QT) as a probe 
molecule due to its large Raman scattering cross section. 
Additional file  1: Figure S2 depicts the SERS spectrum of 
the self-assembled monolayer of 2-QT over pAu/AuNS 
substrate. The intense band at 1,371  cm−1, corresponding 

Figure 1  a–b SEM images of pAu/AuNS surface under different 
magnifications.
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to the aromatic ring stretching, was used to calculate the 
relative standard deviation (RSD) of the SERS signal inten-
sity from various surface locations. For comparison pur-
poses, we carried out the SERS measurements using used 
5× (spot diameter = 3.99 µm; illuminated area = 12.56 µ2 
and working distance  =  14  mm) and 50× (spot diame-
ter = 0.64 µm; illuminated area = 0.32 µ2 and working dis-
tance =  0.37  mm) objectives respectively. When the laser 
beam is focused using the 50× objective, the RSD of the 
SERS signal at 1,371 cm−1 (150 measurements from various 
surface spots, Figure 2a) was found to be 8.74%. However, 
the RSD reduces to 4.92% when using the 5× objective (Fig-
ure 2b). This decrease in RSD with increase in laser focusing 
area (5× objective has 39.25 times higher illumination area 
than 50× objective) is rational as the acquired SERS signal is 
highly averaged when increasing the focusing area.

Using a 5× objective to focus the laser beam onto the 
pAu/AuNS substrate creates a wide area illumination 
(WAI) setting which allows for an increased area of the 
pAu/AuNS surface to be probed when compared to the 
area probed by the 50× objective. The increase in the 
area probed by the laser excitation beam contributes to 
the reproducibility of the SERS signal [19, 20]. This is 

confirmed by the low RSD of 4.92% obtained when using 
the 5× objective. In other words, the WAI setting allows 
for averaging the SERS signal from a large surface area of 
the aptasensor and hence the low RSD of the SERS meas-
urements. Also the homogeneity of the particle coverage 
and packing leads to homogeneous distribution of the 
hot spots to give reproducible SERS signals despite the 
polydispersity (10–100 nm) of AuNS.

Selective extraction and SERS investigation of rHuEPO 
in aqueous medium
The developed pAu/AuNS substrate was then func-
tionalized with EPO-specific aptamer and the remain-
ing bare sites on the surface backfilled with 6-mercapto 
hexanol (see Additional file  1) to create the aptasensor. 
The aptamers-functionalized nanosensor was then used 
for the selective capturing of rHuEPO from aqueous 
medium followed by the direct SERS detection of the 
captured protein. To acquire the native Raman finger-
print of rHu-EPO, we dropped 10  nM rHuEPO over a 
pristine pAu/AuNS surface and allowed it to dry in inert 
atmosphere. The subsequent SERS spectrum rHuEPO 
over non-functionalized surface is depicted in Figure 3aI. 

Figure 2  A series of SERS spectra of 2-QT randomly collected over the entire 8 mm diameter pAu/AuNS disc using a 50× objective with a laser 
focusing area of 0.32 µ2 and b 5× objective with a laser focusing area of 12.56 µ2.
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It is well known that the amide and aromatic (phenyla-
lanine, tyrosine, tryptophan and histidine) vibrational 
bands dominates the Raman spectrum of proteins and 
polypeptides [21–27]. Similarly, the SERS spectrum of 
pAu/AuNS/rHuEPO (Figure  3aI) showed intense bands 
at 1,636 and 1,228  cm−1 corresponding to amide I and 
amide III vibrational modes, respectively [21–27]. The 
amide I at 1,636  cm−1 represent unique fingerprint of 
proteins as does not overlap with other vibrational modes 
from other functional groups. Therefore it can be used as 
a marker band for the identification of proteins without 
any external Raman labelling [28, 29].

The bands at 1,591 and 1,024  cm−1 correspond to the 
aromatic amino acid vibrational modes. Figure  3aII 
depicts the SERS spectrum of EPO aptamer on nanostruc-
tured surface. The SERS spectrum of an aptamer is usually 
dominated by adenine and guanine as the order of SERS 
cross–section is adenine > guanine > cytosine > thymine 
[30, 31]. Figure 3aII clearly indicated that the SERS spec-
trum of aptasensor is heavily dominated by the guanine 
vibrational modes at 647, 1,489 and 1,568  cm−1. This is 
because the EPO aptamer has higher contribution from 
guanine nucleobase than adenine (13:5). Also, the C-S 
stretching mode for the thiolated aptamer is depicted at 
669  cm−1. Figure  3aIII shows the SERS spectrum of the 
apatsensor after capturing the rHuEPO protein (pAu/
AuNS/Apt/rHuEPO) on its surface by the EPO aptamers. 
Scheme 1 depicts the graphical representation of rHuEPO 
captured aptasensor and subsequent SERS investigation. 
SERS The strong band at 1,676 cm−1 is attributed to the 
amide I vibrational mode [21–27]. The amide I band at 
1,676 cm−1 is red shifted by 40 cm−1 when compared to 

that of native rHuEPO at 1,636  cm−1 (Figure  3aI). Simi-
larly, the vibrational modes of the aromatic amino acids at 
1,603, 1,236 and 1,049 cm−1 are also red shifted. The shift 
in vibrational energy of the rHuEPO over the aptasen-
sor surface is attributed to the aptamer conformational 
rearrangements upon binding rHuEPO to the aptamer 
fragment antigen binding (Fab) regions in the aqueous 
medium [7, 32].

In order to reveal the suitability of the present aptamer 
modified pAu/AuNS surface towards SERS quantification 
of rHuEPO, various concentrations of rHuEPO in aque-
ous medium were employed. To each concentration of 
rHuEPO, a freshly prepared pAu/AuNS/Apt surface was 
used to selectively capture rHuEPO onto the aptasen-
sor surface and subsequently screened under the Raman 
microscope. Figure 4a shows the SERS spectra (amide 1 
vibrational mode) of the pAu/AuNS/Apt/rHuEPO sur-
face within a rHuEPO concentration range of 10 nM to 

Figure 3  SERS spectra of a I pAu/AuNS/rHuEPO (drop dry), II pAu/AuNS/Apt (self-assembled monolayer) and III pAu/AuNS/Apt/rHuEPO (selectively 
captured). b SERS spectra of pAu/AuNS/Apt incubated in I blank horse plasma and II rHuEPO spiked horse plasma. Each spectrum is the average of 
10 spectra.

Scheme 1  Graphical representation of rHuEPO captured aptasensor 
and subsequent SERS investigation.



Page 5 of 7Sivanesan et al. J Nanobiotechnol  (2015) 13:43 

10  pM (the spectra were normalized and background 
subtracted). The band centered at 1,676  cm−1 corre-
sponding to amide I vibrational mode of rHuEPO was 
used a reference band for rHuEPO quantification. The 
SERS signals were found to monotonically decrease with 
decreasing concentration (Figure  4a). A linear relation-
ship was obtained between the SERS signal intensity at 
1,676 cm−1 and the corresponding rHuEPO log concen-
tration plot as depicted in Figure 4b. Similar linear rela-
tionship between log(concentration) and SERS intensity 
was formerly demonstrated in the literature [8, 33]. As 
indicated by Figure 4b, good correlation (R2 = 0.993) was 
found over a wide concentration range of TNT (10−8 to 
10−11 M).

Selective extraction and detection of rHuEPO in biological 
fluids
As a proof of concept for the SERS detection of EPO 
doping in biological fluids, we extended our methodol-
ogy towards the label-free identification of rHuEPO in 
horse plasma. 1 nM rHuEPO was spiked into neat horse 
plasma and subsequently dropped over the pAu/AuNS/
Apt. After 30  min, the substrate was washed with Mil-
lipore water to remove the biological matrix and dried 
in gentle flow of argon gas. A similar blank experiment 
was also carried out using un-spiked serum. Figure 3bI, 
II show the SERS spectra of blank and rHuEPO spiked 
(Figure  3bII), on aptasensor respectively. Figure  3bI 
shows strong correlation to Figure  3aII of the pAu/
AuNS/Apt before interaction with EPO protein. The 
resemblance between Figure  3aII, bI indicates that the 
aptasensor when interacted with blank plasma matrix 
(no EPO spiked in matrix) did not bind with any of the 

non EPO proteins that exist in horse plasma. This result 
confirms the selectivity of the aptasensor towards its 
target protein over other proteins that may co-exist in a 
biological matrix. This Figure  3bII clearly depicted the 
amide I band at 1,644  cm−1 and aromatic amino acid 
vibrations at 1,594 and 1,028 cm−1. A close comparison 
between Figure  3aI, bII confirms unambiguous resem-
blance between the spectrum of rHuEPO standard and 
that of the aptasensor after interacting with the plasma 
sample spiked with rHuEPO. The shifts in band positions 
between Figure  3aIII, bII may attributed in part to the 
higher dielectric constant and solvent polarity of aqueous 
matrix in comparison to those of the protein rich plasma 
matrix [34]. In Figure 3aIII, the higher dielectric constant 
and polarity of the aqueous matrix may have caused the 
red shift of the amid I band to the higher wave number of 
1,676 cm−1 from its position at 1,636 cm−1 in Figure 3aI, 
bII. Therefore, we have successfully demonstrated the 
selective extraction and SERS identification of rHuEPO 
in horse plasma. This outcome clearly indicates the sig-
nificance of using aptamers-functionalized homogeneous 
SERS substrate for facile and rapid screening of proteins 
in biological fluids. The full potential of the aptasensor 
is realized when it is combined with handheld Raman 
device for the in-field detection of rHuEPO from biologi-
cal matrices.

Conclusion
We demonstrated a sensitive and homogenous aptasen-
sor for the reproducible detection of EPO in biological 
fluids. Due to the close packing and homogenous dis-
tribution of the nanoparticles coverage over the surface, 
strong and reproducible signal enhancement is acquired 

Figure 4  a SERS spectra of pAu/AuNS/Apt/rHuEPO with decreasing concentration of rHuEPO: 10 nM (black), 1 nM (red), 100 pM (green), and 10 pM 
(blue). b Plot demonstrating the linear relationship between log concentration of rHuEPO and SERS intensity at 1,676 cm−1.
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especially under WAI conditions where the RSD of the 
SERS measurements can be as low as 4.92%. By adapting 
to wide area, handheld Raman devices can used in com-
bination with the new aptasensor for the label-free in-
field screening of rHuEPO in horse plasma.
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