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Application of atomic force microscopy 
in cancer research
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Abstract 

Atomic force microscopy (AFM) allows for nanometer-scale investigation of cells and molecules. Recent advances 
have enabled its application in cancer research and diagnosis. The physicochemical properties of live cells undergo 
changes when their physiological conditions are altered. These physicochemical properties can therefore reflect 
complex physiological processes occurring in cells. When cells are in the process of carcinogenesis and stimulated by 
external stimuli, their morphology, elasticity, and adhesion properties may change. AFM can perform surface imag-
ing and ultrastructural observation of live cells with atomic resolution under near-physiological conditions, collecting 
force spectroscopy information which allows for the study of the mechanical properties of cells. For this reason, AFM 
has potential to be used as a tool for high resolution research into the ultrastructure and mechanical properties of 
tumor cells. This review describes the working principle, working mode, and technical points of atomic force micros-
copy, and reviews the applications and prospects of atomic force microscopy in cancer research.
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Background
As unconstrained and rapidly dividing cells, the phys-
icochemical properties of cancer cells have changed in 
comparison with the normal cells from which they are 
derived [1]. During the invasion and metastasis of can-
cer cells, the adhesion between cells is reduced, and the 
shape and hardness of the cells changes according to the 
surrounding environment [2–4], in order to meet the 
physiological activities of cancer cells themselves. There-
fore, researchers can determine whether or not cells 
are cancerous, whether the cancer cells are invasive or 
metastasize, and the effects of drugs on cancer cells and 
so on by the physical properties such as hardness, adhe-
sion, and Young’s modulus. However, in order to achieve 
the above research, it is necessary to observe and manip-
ulate cells at a nanometer level of resolution. Atomic 
force microscopy (AFM) is an extremely high resolution 

tool, which can be used to observe the morphology of 
a sample, and quantitatively measure its mechanical 
properties at atomic resolution. For this reason, AFM 
has applications in cancer research. The technique was 
invented in 1986 by IBM’s G. Binnig, and C. F. Quate and 
C. Gerber at Stanford University [5]. AFM is the highest-
resolution and most widely used member of the scanning 
force microscopy (SFM) family, with a horizontal resolu-
tion of 0.1  nm, a vertical resolution of 0.01  nm, and an 
atomic level of resolution. It goes beyond the limits of the 
resolution of microscopes which use light and electron 
wavelengths. AFM uses a microscopic physical probe to 
“grope” the microcosm and observes the morphology 
of the sample under investigation in three-dimensional 
space, obtaining information from the very weak interac-
tion between the probe and the sample surface.

The technical advantages of AFM are the main rea-
sons for its rapid and widespread adoption in biology 
and medicine [6]. Firstly, due to the extremely high 
resolution of AFM, it is possible to perform direct 
three-dimensional imaging of molecular, and even 
atomic-scale structures. Secondly, sample preparation 
for AFM is straightforward, the damage to the original 
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structure is small, and the original appearance of the 
sample can be determined objectively and accurately. 
Thirdly, due to the fact that samples can be observed 
under near-physiological conditions, the dynamic pro-
cesses of molecules, organelles, and other structures in 
living cells can be recorded in real time by AFM [7]. 
Fourthly, AFM can measure intermolecular forces, 
charge, pH, and other physicochemical characteristics 
of sample materials. Finally, the functionalized probe 
can be used to identify specific molecules or inter-
action forces such as ligand-receptor interactions. 
Therefore, AFM has good prospects for application in 
biomedicine and clinical medicine, and particularly in 
the diagnosis and treatment of cancer. Cell mechanics 
is a promising biomarker for indicating cell states [8–
13]. The mechanics of cells can be measured by many 
methods including, among others, magnetic twisting 
cytometry, optical tweezers, and atomic force micros-
copy. Of these methods, however, AFM is the most 
widely used tool for this purpose [14–16]. The advan-
tages and disadvantages of these methods are summa-
rized in Table 1.

At present, the study of the physical properties of 
tumors is not sufficiently thorough. In view of the 
various unique advantages of AFM, it may be used to 
investigate changes in ultrastructure and mechani-
cal properties within tumor tissues and cells which, in 
turn, can be used as a basis for clinical adjuvant diag-
nosis [17]. At the same time, AFM allows for the explo-
ration of the mechanisms of antitumor drugs at the 
cellular and molecular level; this allows for the evalu-
ation of drug efficacy, and opens avenues for the pre-
vention of tumor cell proliferation [18–22].

The basic principle of AFM
The AFM system consists of the following compo-
nents: a micro-cantilever with probe, a micro-cantilever 
motion detection device, a feedback loop for monitoring 
micro-cantilever motion, a piezoelectric ceramic scan-
ning device for sample scanning, and a computer-con-
trolled image acquisition, display, and processing system 
(Fig.  1). AFM studies the surface structure and proper-
ties of the sample by detecting very weak interatomic 
interactions between the sample surface and the probe 
tip. The working principle is to fix one end of micro can-
tilever, which is extremely sensitive to weak force, while 
other end of cantilever contained in the probe brought 
into close proximity with the sample [23]. Once this 
has been accomplished, a very weak force, which may 
be either repulsive or attractive, exists between the tip 
atom of the probe and the atoms of the sample surface. 
The magnitude of this force changes the deformation of 
the micro cantilever or its motion state. When the sam-
ple is scanned, sensors are used to detect these changes 
and force distribution information is obtained, allowing 
the user to obtain surface structure information with 
nanometer resolution. The AFM scanner can move in the 
X, Y, and Z directions. While the distance traveled in the 
X and Y directions varies with the scanner, the vertical 
Z direction is typically limited to a few microns. At the 
same time, the morphology of the scanning area sample 
can be obtained by reconstructing the position of the 
piezoelectric ceramic scanning tube in the Z-direction 
and the X–Y plane. The Young’s modulus value of sam-
ples, like cells and tissues, is fitted with a linear fit by 
Hertz model, with a smaller Young’s modulus indicat-
ing that the sample is more susceptible to deformation. 
The force-distance curve measured by AFM reflects the 

Table 1  Comparison of representative methods in measuring cell mechanics [8, 14–16]

Methods Advantages Disadvantages

Microfluidics High throughput (~ 1 cell/s); ability to control cell environ-
ment and approximate physiological conditions

Be prone to cell adhesion and clogging; limited materials 
for fabricating devices; cell size is often neglected

Micropipette aspiration Simple and cost-effective; large range of force (up 
to ~ 100 nN)

Low throughput; limited special resolution (< 1 cell/10 min); 
possible damage to cells; mainly for suspended cells

Micropost arrays Ability to measure the traction forces of single cells or cell 
populations

Mainly for adherent cells; high cost and complexity; the 
topology of micropost arrays may influence cell activities

Magnetic twisting cytometry Probing the local mechanics of cells; magnetic beads can 
be bound with diverse types of cellular molecules or 
structures

Low throughput (< 1 cell/min); difficult to standardize; only 
for unidirectional forces

Optical tweezers High precision measurements of small forces (0.01–103 
pN); can be integrated with microfluidic delivery

Limited force (< 500 pN) applied on cells; detrimental effects 
on cells due to heating

Parallel plate Simple and cost-effective; ability to study single cells of 
cell populations

Low throughout; low spatial resolution

Atomic force microscopy Applicable for both suspended cells and adherent cells; 
simultaneously obtain structural and mechanical infor-
mation with nanometer resolution

Low throughput (< 1 cell/10 min); the mechanical poking of 
the AFM tip may influence cell activities
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quantitative force between the tip and the sample. Using 
the corresponding probes, equipped with dedicated soft-
ware, AFM can measure the nano-indentation of the 
micro regions, and force–displacement curves drawn on 
this basis [24] can be used for the quantitative measure-
ment of a material’s elastic modulus, adhesion, and stiff-
ness (Fig. 2) [25]. Each force curve is saved during the test 
for later quantitative analysis.

The principle of AFM imaging and mechanical prop-
erty detection is based on the attraction and repulsive 
forces between atoms. The atoms at the tip of the probe 
and those on the surface of the sample are subjected to 
an attractive force when too far apart, and to a repulsive 
force when they are in close proximity (Fig. 3a). The basic 
imaging modes of AFM include: contact mode (Fig. 3b), 
non-contact mode (Fig. 3c), and tapping or semi-contact 
mode (Fig. 3d). In contact mode, the probe of AFM keeps 
a slight contact with the sample surface and maintains a 
constant force. In non-contact mode, the surface topog-
raphy of the sample is produced by measuring the atomic 
attraction between the probe and the sample. In the tap-
ping mode, the micro-cantilever of the probe is forced 
to move near the resonance frequency, and the probe 
makes contact with the sample intermittently. The force 
between the probes and sample can be kept constant 
by controlling the amplitude or deflection of the micro-
cantilever when the probe touches the sample. Tapping 
mode effectively eliminates the influence of the lateral 
force and reduces the force caused by the adsorption 

layer, resulting in a high image resolution, especially for 
surface ultrastructure observation of biological samples.

The study of single cancer cells using AFM is expected 
to be advantageous in two aspects. On the one hand, the 
diagnosis of early cancer focuses on the observation of 
changes and differences between single cells, with the 
differences between cancerous and non-cancerous cells 
allowing for early diagnosis and treatment of cancer [26]. 
On the other hand, it allows for the study of the structure 
and function of cancer cells, the mechanisms involved in 
their spreading, interaction processes between cells, and 
the mechanisms of anti-cancer drugs, etc. The resultant 
findings from such studies should aid researchers in their 
goals of finding means of blocking cancer cell prolifera-
tion, and developing anti-cancer drugs [27–30].

Observation of cancer cells morphology
Using visible light microscopy, no significant differences 
in the surface morphology of white blood cells could 
be detected in cells from chronic leukemia patients and 
healthy subjects. However, observations of both cells 
under AFM revealed that a large number of needle-like 
structures appeared on the surface of leukocytes in leu-
kemia patients, and that cell surface roughness was also 
significantly higher than that of normal white blood cells 
[31]. This indicated that the resolution of the AFM is sig-
nificantly higher than that of the optical microscope, and 
is capable of distinguishing between differences in the 
ultrastructure of the cells. In addition to observations of 

Fig. 1  Schematic diagram of AFM working principles. The AFM instrument is composed of a piezoelectric ceramic tube, a laser generator, a 
position-sensitive photodiode detector, a controller, and an AFM probe. The AFM probe is a micro-cantilever with a sharp tip attached at its end. 
The tip, which has a monomolecular point, allows for nanometer resolution imaging and the micro-cantilever is a force sensor that can detect even 
minute deformation of a sample, enabling very high sensitivity AFM in force measurements
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tumor cell lines, AFM can also scan patient’s tumor tissue 
or cells for imaging. Hanekar et al. explored the relation-
ship between SMAR1 expression and cell surface rough-
ness under AFM in different grades of human breast 
cancer tissues [32]. This study illustrates that it is possible 
to observe the ultrastructure of the membrane surface of 
different types of tumor, and to analyze their common 
characteristics and differences. AFM can also highlight 
the significant differences in cell membrane morphology 
between normal cells and tumor cells, and can determine 

whether the cells are malignant or not, compared with 
tumor cells from the same source. This provides a reliable 
auxiliary basis for clinical pathological and differential 
diagnoses.

In cancer cells, the expression of certain genes may be 
either up-or down-regulated. For example, the CDX2 
gene is less active in most patients with colorectal cancer 
[33, 34]. Overexpression of CDX2 can inhibit the metas-
tasis of this cancer, while further inhibiting its expres-
sion promotes metastasis [35, 36]. It has been shown 
that CDX2 has tumor suppressing activity [37–39]. AFM 
detection showed that the stiffness of colon cancer cells 
increased with higher expression of CDX2, and that cell 
variability decreased, which weakened the ability of the 
cells to transfer to the extracellular matrix and capillar-
ies [40]. Vascular endothelial growth factor D (VEGF-D) 
and vascular endothelial growth factor C (VEGF-C) are 
thought to be involved in the formation of lymphatic 
vessels and blood vessels [41, 42]. After transfecting a 
recombinant plasmid containing VEGF-D into lung can-
cer cells, AFM detection showed that irregular micro-
spikes and nanoclusters appeared on the cell surfaces, 
and that cells became more rigid. Using AFM to observe 
the surface morphology of lung cancer cell PC9, the mor-
phology image of cancer cells with high resolution could 
be obtained (Fig.  4a–c). The above studies demonstrate 
that AFM can be used to detect changes in the morphol-
ogy of cancer cells caused by cancer-associated genes, 
providing an additional detection method for phenotypic 
changes which is complementary to traditional investiga-
tive methods.

Mechanical properties of cancer cells
The mechanical strength of cells plays an important 
role in the homeostasis of tissues, cell growth, division, 
migration, and epithelial-mesenchymal transition [43]. 
Numerous studies have shown that differences exist in 
the stiffness of normal and cancerous cells, and between 
primary and metastatic cancer cells. Cross et al. detected 
the cells of patients with suspected metastatic adenocar-
cinoma (lung, breast, and pancreatic cancer) using AFM. 
Studies have indicated that, even if benign and malignant 
cells are similar in shape and therefore difficult to distin-
guish by visual inspection, they may still be identified by 
mechanical analysis [44, 45]. In addition, the Cross group 
also reported biomechanical differences between human 
mesothelial tumor cells and normal cells [46]. Other 
researchers have found that human bladder cancer cells 
have lower hardness than normal epithelial cells [47], 
and that human breast cancer MCF-7 cells are softer 
than MCF-10 cells [48]. These studies showed that it is 
possible to distinguish between cancer cells and normal 
cells, and between original and metastatic cancer cells, 

Fig. 2  Force-distance curve-based AFM. a Principle of force-distance 
(FD) curves by approaching (red) and withdrawing (blue) the AFM tip 
from the sample. The tip of the cantilever is initially distant from the 
sample [1] to which it is brought into contact [2]. During retraction [3] 
of the AFM tip, adhesive events may occur at different distances due 
to nonspecific [4] or specific [5] interactions between tip and sample. 
b The force-curve plot from an AFM measurement. The slope value 
is fitted with a linear fit (red line) (a), the adhesion is measured as a 
single value and the mechanical value of the point (b) indicates the 
adhesion force
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by detecting their mechanical properties using AFM. 
This provides a novel auxiliary means of clinical cancer 
diagnosis. The mechanical properties of lung cancer cell 
PC-9, including Young’s modulus, adhesion, and stiff-
ness, have also been quantitatively measured by AFM 
(Fig.  4d–f). This showed that AFM can not only detect 
the morphology of cancer cells, but also perform deeper 
mechanical properties and cell structure analysis on can-
cer cells.

The invasion and metastasis of tumor cells has an 
important relationship with the microenvironment. AFM 
measurement of extracellular matrix (ECM) microme-
chanics provides important insights into disease-induced 
tissue stiffness alterations [49]. It was found that nor-
mal liver tissue, liver fibrosis tissue, and liver cirrhosis 
were significantly different in terms of hardness when 
examined by AFM. There was no significant difference 
in hardness between liver cirrhosis tissue and hepato-
cellular carcinoma tissue [50]. This suggested that the 
hardness of the liver is increased during carcinogenesis, 

which may progress to liver cancer after cirrhosis. In 
addition, a series of studies have shown that cancer cells 
are more rigid than normal cells [51]. These findings dis-
prove the idea that cancer cells tend to be softer than 
normal cells, and indicate that hardness depends on the 
needs of the cancer cells themselves during the process of 
carcinogenesis.

The study of tumor‑associated molecules 
and subcellular structures
Circulating cell-free DNA (ccfDNA) is an important bio-
marker for the diagnosis and treatment of cancer [52], 
and can be indicative of changes in the genotype and 
phenotype of primary tumors [53]. It has been found that 
more than 80% of the ccfDNA fragments in the plasma 
of cancer patients are under 145 bp in size, and that their 
size is always less than 300 bp [54]. Reduced fragmenta-
tion of ccfDNA is associated with increased overall sur-
vival. After chemotherapy, plasma ccfDNA fragmentation 
in normal patients is greatly reduced, while patients with 

Fig. 3  Three basic working modes of AFM. a The curve of both interatomic force and intervals relation. b In contact mode the probe is always 
slightly contact with the sample and scanned in a constant force mode. c In the non-contact mode the tip of the needle always vibrates on the 
surface of the sample, but it is never contact with the sample. The scanning detector detects long-range forces such as van der Waals force or 
electrostatic forces that do not damage the imaged sample. d In the tapping mode the micro cantilever is subjected to stress vibration near its 
resonant frequency, and the oscillating needle tip gently strikes the surface of the sample, intermittently making contact with it
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KRAS mutations have a greater degree of radiotherapy 
resistance [55]. This demonstrated that AFM can be 
used to detect the ccfDNA fragmentation index in can-
cer patients, and that this may be used as a potential bio-
marker for cancer treatment [56–59].

miRNAs play an important role in controlling vari-
ous cellular processes, and their expression levels 
can change with disease [60–65]. Northern blotting 
is a standard method for miRNA quantification, but 
requires a large amount of RNA for analysis and is 
insensitive to low abundance RNA [66, 67]. qRT-PCR 
is also used to quantitate miRNAs, but the length of 
miRNAs and primers will, to some extent, hinder their 
direct detection, which may also be affected by plat-
form differences [68]. Neither of these techniques can 
be used to perform in  situ analysis of miRNAs, or to 
provide information concerning their subcellular locali-
zation. Although nanopore sensors and the single-mol-
ecule fluorescence microscopes can be used for single 
miRNA detection, their sensitivity is not strong [69–
72]. While enzyme-assisted fluorescence [73], nano-
particle [74], and in situ enrichment (Toehold-initiated 

rolling circle amplification) [75] techniques can observe 
single-molecule miRNA, their spatial resolution is 
poor. AFM, however, is perfect for accurately quantify-
ing miRNA content at the single cell level, allowing for 
direct and high sensitivity in  situ quantification [76]. 
AFM cannot only quantitate intracellular miRNAs, but 
can also provide accurate information on their subcel-
lular localization [77]. Therefore, cancer-associated 
miRNA detection can be performed in situ using AFM, 
which further extends the diagnostic methods available 
for cancer [78, 79]. In addition, there are miRNAs in 
the exosomes secreted by tumor cells which are consid-
ered to be related to the development of tumors. These 
constitute a variety of tumor markers for breast cancer 
[80–82], colon cancer [83, 84], lung cancer [85], thyroid 
cancer [86], etc. AFM can be used for imaging analy-
sis of exosomes with different separation modes, and 
can analyze the effects of different separation methods 
on the size of exosomes [87]. It can therefore be used 
to detect cancer diagnosis markers including ccfDNA, 
miRNA, and exosomes, strongly supplementing exist-
ing cancer detection and diagnosis methods.

Fig. 4  Imaging of cancer cell morphology and measuring the mechanical properties of cancer cells by AFM. a Representative AFM height image. 
b Representative AFM deflection image. c 3D distribution of cell height. The force curve is used to calculate mechanical properties. d Image 
representing Young’s modulus distribution. e Image representing adhesion force distribution. f Image representing stiffness distribution. Parameters 
are displayed as colors. The results of morphology observation and mechanical properties measurement of the cell were from our study group
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In addition, AFM can be used to observe the internal 
structure of cancer cells. All signaling pathways for can-
cer cell metastasis go through the nuclear pore complex 
(NPC), and small molecules can freely pass through 
NPCs [88]. However, molecules larger than 40 kDa must 
be combined with FG-Nups to pass through the nuclear 
pore complex [88]. Using high-speed AFM (HS-AFM), 
researchers were able to directly observe nano-scale 
changes in the channels of the nuclear pores in dying 
colon cancer cells (CRC), and found that these changes 
were mainly in FG-Nups [89]. This suggested that HS-
AFM can measure high speed dynamic changes and dis-
ordered intracellular systems, and may be used as a cell 
endoscope to study other organelles in cancer cells. These 
results showed that AFM can not only measure the mor-
phology and mechanical properties of cells, but can also 
be used to locate and analyze corresponding molecular 
and subcellular structures in cancer.

The study of the interaction between molecules
For cells, AFM can not only provide morphological infor-
mation on their length, width, and height, but can also 
be used to study fine structures such as receptors, lipid 
rafts, and various pathways on membranes. AFM allows 
researchers to study the activity of unique molecules on 
individual cells under physiological conditions [90]. By 
attaching specific molecules (such as ligands and anti-
bodies) to AFM probes, they can locate and manipulate 

interacting proteins (such as receptors and antigens), 
using a method called single-molecule force spectros-
copy (SMFs) [91, 92] (Fig. 5). This is a powerful supple-
ment to traditional methods to detect the interaction 
between single molecules [93]. For example, Rituximab is 
a monoclonal drug for the treatment of leukemia, which 
is connected to the AFM probe surface [94] to measure 
the distribution and binding of CD20 and FCR in tumor 
and NK cells, respectively, and it was found that the bind-
ing force of CD20-rituximab is significantly greater than 
that of FCR-rituximab, the frequency distribution of 
CD20 in tumor cells was significantly higher than that 
of FCR on NK cells. The above research suggested that 
the study of interactions between molecules is feasible 
by AFM, which can also be used to study the interactions 
between cancer-related molecules.

Curcumin is a natural polyphenol complex, and a large 
number of studies have shown that it has an inhibitory 
effect on many cell lines [95–97], but has no toxic effect 
on normal cells [98–100]. The CD44 antibody was con-
nected to the AFM probe surface to measure CD44 
distribution of the cell surface and the binding force 
between CD44 and the antibody. Researchers found that 
the binding force between the CD44 antibody and surface 
CD44 in human hepatoma cells treated by curcumin was 
decreased, and the expression of CD44 on cell surfaces 
was also decreased in unit area [101]. This finding is simi-
lar to the results detected by the flow cytometry [101]. 

Fig. 5  Schematic diagram of AFM-based single-molecule force spectroscopy. a Individual antibodies or other molecules immobilized on a 
functionalized tip are positioned above a cell adhering to a substrate. b Sample and tip molecules are then brought into contact for a defined 
contact time and with a preset contact force. c The molecules are subsequently separated, and the maximal separation force and the detachment 
work can be determined using a simultaneously recorded force–distance curve. d The cantilever is retracted until the tip and sample molecules 
separate
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These studies help to explain the relationship between the 
distribution of CD44 and the apoptosis of cancer cells, as 
suggest the possibility of tumor therapy by blocking the 
CD44 molecule on the tumor cell with CD44 antibody. 
Results of this type show that AFM has good application 
value in the study of tumor-related molecules.

AFM has many advantages in detecting the interaction 
between molecules. Compared with traditional meth-
ods such as surface plasmon resonance [102], radioim-
munoassay [103], and fluorescence resonance energy 
transfer [104], SMFs can be used to directly measure 
molecular interactions on the surface of living cells, but 
in relatively shorter time and at lower cost. The informa-
tion obtained from SMFs analysis in conjunction with 
clinical data can help researchers discover biomarkers for 
efficient tumor prediction and diagnosis.

Evaluation and development of antitumor drugs
It is of potential value to estimate the effect of antican-
cer drugs by regulating changes in the morphological 
and mechanical properties of cancer cells [105–107]. 
It is generally believed that decreased adhesion of can-
cer cells is the first step in metastasis. Disulfiram (DSF) 
is a commonly used clinical hangover drug [108]. How-
ever, studies have shown that the DSF-Cu complex has 
an anti-tumor effect [109]. The stiffness and adhesion 
of nasopharyngeal carcinoma cells treated with DSF-Cu 
have been shown to be increased [110], which suggested 
that DSF-Cu reduces the deformability and enhances the 
adhesion of these cells. DSF-Cu may, therefore, inhibit 
the malignant growth and metastasis of nasopharyngeal 
carcinoma cells.

Changes in the deformability and adhesion of can-
cer cells may be due to major changes in the morphol-
ogy and structure of the cell surface following drug 
treatment. After treatment of colon cancer cells with 
AEE788 and Celecoxib, their cell surfaces became 
rough and severely contracted, with pseudopodia and 
filopodia disappearing completely [111]. The morphol-
ogy and ultrastructure of Hela and HepG2 cells were 
also changed after being treated by colchicine and cyti-
dine, and the degree of damage to cancer cells varied 
with the concentration of the drugs, and the timing of 
their administration [112]. These findings suggested 
that the surface morphology of cells can change dra-
matically after stimulation by drugs or bioactive com-
pounds. In addition, the efficacy of drugs can be judged 
by their effects on cell surface roughness and hardness. 
Prostate cancer is a malignant tumor that occurs in the 
prostate gland of men. Ren et  al. evaluated the effects 
of eight anticancer drugs against this cancer using AFM 
[113]. They found that the Young’s modulus of PC-3 
cells increased significantly after treatment with eight 

drugs, and the mechanism of action of drugs on the 
mechanical properties of PC-3 cells was different. These 
studies suggested that AFM can be effectively used in 
the screening and evaluation of anticancer drugs.

The development of new anti-cancer drugs is essen-
tial for the treatment of cancer. Most of the anti-tumor 
drugs are cytotoxic substances. Due to their poor speci-
ficity, they can also cause damage to human normal 
cells, and may cause strong adverse reactions while 
providing only low anti-cancer efficiency. Traditional 
liposomes and nanomaterials have been shown to have 
good biocompatibility, sustained release, and target-
ing after being modified and improved, and are the 
most attractive drug carriers. In evaluating the physi-
cal properties and stability of liposomes, AFM is one of 
the most effective detection technologies [114]. Lapa-
tinib is a dual inhibitor that is used to treat advanced 
breast cancer and some other cancers [115–117]. Lapa-
tinib is poorly soluble in water, but after being encap-
sulated in lipoproteins to form nanoparticles (LTNPs), 
its water solubility increases from 7  μg/mL to 10  mg/
mL or more. AFM measurements showed that LTNPs 
are spherical particles, and that the height of the par-
ticles is not positively correlated with the diameter, as 
the diameter is about 60 nm and the height is less than 
3 nm [118].

Carbon nanomaterials are widely used in biomedi-
cal devices and biosensors, including carbon nanopar-
ticles (CNP), carbon nanotubes (CNT), and graphene, 
etc. [119–121]. One study found that carbon nanopar-
ticles (CB) which were covered using BSA and sur-
face-coupled to methotrexate (methotrexate) to form 
complexes (CBM) were better than methotrexate alone 
for inhibiting tumor cells [122]. The sizes of CNP, CB, 
and CBM were found to range between 16–27, 35–44, 
and 51–66  nm, respectively, using AFM. Surface mor-
phological changes were found on functionalized CB 
and CBM, which was mainly reflected in the signifi-
cant change in roughness [122]. Similar conformational 
changes were also found when BSA was bound to CNP 
[123, 124]. This indicated that CNP could be used as 
a nano-carrier to connect anticancer drugs with their 
corresponding target cells. The surface structure of 
these nanoparticles or nanocomposites can be quickly 
determined by AFM [125], allowing for the possible 
function and work scope of the nano-composites to be 
predicted.

AFM can assist in the evaluation, screening, and 
development of anti-cancer drugs. Therapeutic meth-
ods that can cause changes in the morphology and 
mechanical properties of cancer cells can be detected 
by AFM, which provides an aid for the diagnosis and 
treatment of cancer.
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AFM in combination with other technologies
The distal metastasis of cancer is the cause of death 
in most cancer patients. Understand the differences 
between primary cancer cells and metastatic cancer 
cells is therefore critical for the diagnosis and treatment 
of cancer. At present, it is known that the original can-
cer cells and metastatic cells have different genetic maps 
[126, 127], which can be used in clinical diagnosis. It has 
been shown that Raman spectroscopy can successfully 
distinguish between cancer and healthy cells, primitive 
and metastatic cancer cells, and cancerous and healthy 
tissues [128–131]. The prominent advantage of Raman 
spectroscopy is that it is possible to know the chemical 
composition of the substance [132], which is impossible 
for AFM. However, if AFM and Raman spectroscopy are 
used together [133], it is possible to not only know the 
substance content of the cell surface, but to simultane-
ously determine the substance’s chemical composition, 
thereby enlarging the scope for the use of AFM.

AFM may be combined with a confocal laser scanning 
microscope (CLSM) to study the mechanical proper-
ties of individual cancer cells [134]. The combination of 
AFM and CLSM directly correlates indentation points 
with film imaging of subcellular structures [135]. In 
the early stage of cancer development, the mechanical 
properties and morphology of cells change. Researchers 
can detect changes in the elasticity of cancer cells using 
AFM and elucidate its relationship to malignancy in the 
early transformation process. Alpha-enolase (ENO1) is 
a multifunctional protein [136, 137] that is not only one 
of the enzymes involved in glycolysis, but also a fibrino-
gen receptor that promotes cancer metastasis [138–141]. 
Combined use of AFM and CLSM revealed that ENO1 
gene silencing made pancreatic cancer cells coarser, dam-
aging the adhesion between cancer cells, and between 
cancer cells and stroma, resulting in the invasion and 
metastasis of pancreatic cancer cells [142].

Cervical cancer is the second most common cancer in 
women [143]. Accurate and early diagnosis can reduce 
costs, greatly benefiting patients. AFM’s high resolu-
tion imaging of suspected malignant cells can provide 
more information than light microscopy, targeting cells 
for accurate diagnosis [144, 145]. It also provides advan-
tages over scanning electron microscopy (SEM) imaging, 
allowing for high-resolution 3D imaging, with faster sam-
ple preparation, and determining the unique mechanical 
properties of cells. However, there are limitations to the 
imaging of cervical cancer cells using either AFM or SEM 
alone. Multiple forms of detection are more accurate 
than those provided by a single format test. The imaging 
diagnosis of cervical carcinoma cells with AFM and SEM 
has the advantages of fast detection, easy operation, low 
cost, and so on [146]. SEM and AFM are currently the 

most common means of surface analysis. However, with 
AFM, work area selection is very blind, and the work area 
itself is very limited. Scanning can only be done on the 
micrometer scale, and it is very difficult to scan larger 
sample surfaces. Utilizing the large-scale search capabili-
ties of SEM to find and target features or areas of inter-
est that need to be studied by AFM can greatly improve 
the efficiency of analyses. This system can also be used to 
detect and diagnose other cancers.

The World Health Organization classifies astrocytomas 
based on the microscopic appearance of tumors [147]. 
However, the details of the complex morphology vary 
according to the specific tumor and patient, and the final 
classification has to be determined by an experienced 
pathologist. Therefore, in order to make the classification 
more accurate, more objective criteria need to be deter-
mined. The combined use of AFM imaging and Data 
Mining Techniques to classify brain tumors is a recently-
developed method, achieving 94.74% classification accu-
racy in distinguishing between type II, III, and IV tumors 
[148]. Patients with stage II tumors can quickly be diag-
nosed using this method, reducing their risk of cancer 
metastasis.

AFM imaging and mechanical measurement tech-
niques have been widely used in the biomedical field, and 
allows for the determination of cell structure and func-
tion from level of single molecules to that of individual 
cells. These methods can be used to differentiate between 
cancer and normal cells at the single-cell level, and ena-
bles visual drug research. No technology lacks draw-
backs, and AFM technology does have limitations, but 
its use in combination with other complimentary tech-
nologies is a developing trend and is expanding the use 
of AFM.

Conclusion and prospects
After nearly 30 years of development, AFM has played an 
increasingly important role in cell imaging and the study 
of the mechanical properties of cells. From initial imag-
ing modes (such as contact and tapping imaging modes) 
and force curve-based mechanical measurement modes 
to today’s high-speed imaging mode (such as fast-scan 
mode) [149] and high-resolution mechanical measure-
ments modes (such as peak force mode) [150, 151] make 
AFM increasingly important in the study of cell physico-
chemical properties. The mechanical properties of cells 
can be used as a new diagnostic physical biomarker to 
supplement traditional tissue detection [152]. However, 
there are still many problems to be solved before the 
application of AFM technology can be fully realized in 
practice (for example, in the diagnosis of cancer).

The usage efficiency and the temporal resolution 
should be improved. At present, AFM measurement 
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of cells mainly depends on manual operation, includ-
ing manual control of the probes to target cells, manual 
parameter setting to obtain cell force curves, and man-
ual offline processing of experimental data. This leads 
to very low experimental efficiency, and it takes several 
minutes to take a measurement of a cell [8]. In particu-
lar, in order to obtain statistically significant conclu-
sions, many cells need to be measured, which results in 
a large workload, and limits the practical application of 
AFM at the single cell level. Therefore, improving AFM’s 
level of automation will help improve its measurement 
efficiency. In addition, the response time of the cell to 
the environment is approximately 1  ms, which is sig-
nificantly shorter than AFM’s mechanical mapping time 
(about 10 min) [153]. This has made it difficult to moni-
tor changes in the mechanical properties of cells in real 
time. Although HS-AFM has been commercialized [154], 
with available systems having imaging times of less than 
100  ms [155], and is suitable for imaging rigid and flat 
small-size samples, such as substrate-bound molecules 
[156] and microbial cell walls [157], increasing the speed 
of AFM detection will be of use in real-time studies of 
changes in the dynamic mechanical properties of cells 
[158, 159]. High-speed AFM can also be used for imaging 
of mammalian cells [160]. The imaging time is, on aver-
age, approximately 5 s, far larger than the response time 
of cells to external stimuli.

The standardization of AFM measurements is another 
requirement. Young’s modulus is a value commonly 
reported when AFM is used to measure the mechanical 
properties of cell, but is dependent on the conditions of 
the experiment, including the environment (temperature, 
substrate, culture medium) [161], instrument parameters 
(loading rate, indentation depth) [162], cell (cell position 
constrained, cell state) [163], data analysis (e.g., pattern 

selection, contact point determination) [164], and so on. 
The results of different studies can only be compared 
when the conditions are in full agreement, and it is dif-
ficult for researchers to maintain identical experimental 
conditions. Therefore, in order to make the measure-
ment results of different research groups comparable, the 
measurement process needs to be standardized, as does 
sample treatment.

For clinical and practical applications, multiple clini-
cal cases are needed to verify the reliability of mechani-
cal property detection. Sample preparation and AFM 
measurements need to be standardized, and the relative 
values characteristic of cancer cells and normal cells 
need to be determined. Some studies directly measure 
the mechanical properties of the original cancer tis-
sue, which allows for detection of the different stages 
of tumor metastasis [165, 166]. However, tumor tissue 
includes cancerous cells, normal cells, blood vessels, 
and extracellular matrix [167], which means that such 
measurements describe the mechanical properties of 
the local tissue, and not of isolated cancer cells. The 
most difficult part of the measurement is to determine 
the contribution of each component to the mechanical 
properties of cancerous tissue. Studies have shown that 
other non-tumor cells in tumor tissues also affect the 
development and metastasis of tumors [168]. In addi-
tion, tumor tissue is highly heterogeneous, with differ-
ences manifesting in different tumor tissues as well as 
in different parts of the same tissue [169]. Therefore, 
tumor tissues in different locations may have different 
mechanical properties, and different parts of the tissue 
need to be extracted for comparative detection.

In recent years, many AFM models have been devel-
oped [170–172]. Together with advances in comple-
mentary techniques (Table  2), this will allow AFM to 

Table 2  Comparison of high-resolution imaging techniques in molecular and cell biology [171]

STED stimulated emission depletion, PALM photo activated localization microscopy, STORM stochastic optical reconstruction microscopy

Technique/
feature

Atomic force microscopy Super-resolution microscopy 
(STED, PALM, STORM)

Transmission electron 
microscopy

Scanning election 
microscopy

Resolution ≤ 1 nm–50 nm 20–50 nm 0.2–10 nm 2–10 nm

Sample prepa-
ration and 
environment

Sample on support; physiological 
(buffer solution, temperature, 
CO2)

Fluorescence labelling; 
physiological (buffer solution, 
temperature, CO2)

Sample on grid; dehydrated 
(negative stain); vitrified 
(cryo-electron microscopy)

Freeze/critical point drying 
and metal shadowing

Artefacts Tip, force, scanning Bleaching, toxicity Dehydration, ice crystal forma-
tion, beam damage

Dehydration, metal shadow-
ing, beam damage

Advantages Imaging under native conditions; 
no staining, labelling, or fixation 
necessary; high signal-to-noise 
ratio; assessment of multiple 
physical, chemical, and biologi-
cal parameters

Access to three-dimensional 
cellular structures; high 
spatiotemporal resolution; 
monitoring biomolecular 
processes in life cells

Solves atomic structures of 
proteins; conformational 
snapshot of proteins and 
complexes; molecular resolu-
tion of structures within 
the cell

Imaging surfaces of tissues, 
cells, and interfaces as 
nanometer-scale resolution

Limitation Restricted to surfaces Imaging restricted to fluores-
cence labels

No life processes No life processes
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address outstanding questions in biology in the coming 
decades. These have made the AFM easier to apply to 
biological systems, which has resulted in more infor-
mation on these systems being generated.

Currently, the sensitivity and temperature stability 
(drift) of AFM limits its accuracy in describing biologi-
cal systems. The recently introduced ultra-stable AFM 
can provide the accuracy of sub-pico force while pro-
viding high stability (< 0.03  Å) at very low lateral drift 
(~ 5 pm min) [173, 174]. We predict that with the con-
tinuous development and improvement of AFM tech-
nology, it will play an increasingly important role in 
cancer research and diagnosis.
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